feat: toy tutorial chapter 2.

This commit is contained in:
jackfiled 2025-06-02 16:17:45 +08:00
parent 1a64b78ef8
commit 8d2f844e2b
Signed by: jackfiled
GPG Key ID: DFE1C10667D768E8
10 changed files with 1269 additions and 5 deletions

View File

@ -20,19 +20,36 @@ include(AddLLVM)
include(AddMLIR)
include(HandleLLVMOptions)
message(${MLIR_INCLUDE_DIRS})
include_directories(${LLVM_INCLUDE_DIRS})
include_directories(${MLIR_INCLUDE_DIRS})
link_directories(${LLVM_BUILD_LIBRARY_DIR})
add_definitions(${LLVM_DEFINITIONS})
include_directories(include)
# Add include directory in cmake output directory for lint.
include_directories(${CMAKE_BINARY_DIR}/include)
add_subdirectory(include)
add_library(SyntaxNode SHARED lib/SyntaxNode.cpp include/SyntaxNode.h include/Parser.h include/Lexer.h)
add_library(SyntaxNode STATIC
lib/SyntaxNode.cpp
lib/Dialect.cpp
lib/MLIRGen.cpp
include/SyntaxNode.h
include/Parser.h
include/Lexer.h
)
add_dependencies(SyntaxNode HelloOpsIncGen)
target_link_libraries(SyntaxNode
PRIVATE
MLIRSupport)
MLIRSupport
MLIRAnalysis
MLIRFunctionInterfaces
MLIRIR
MLIRParser
MLIRSideEffectInterfaces
MLIRTransforms)
add_executable(hello-mlir main.cpp)

View File

@ -0,0 +1,26 @@
# User defined generic function that operates on unknown shaped arguments.
def multiply_transpose(a, b) {
return transpose(a) * transpose(b);
}
def main() {
# Define a variable `a` with shape <2, 3>, initialized with the literal value.
var a = [[1, 2, 3], [4, 5, 6]];
var b<2, 3> = [1, 2, 3, 4, 5, 6];
# This call will specialize `multiply_transpose` with <2, 3> for both
# arguments and deduce a return type of <3, 2> in initialization of `c`.
var c = multiply_transpose(a, b);
# A second call to `multiply_transpose` with <2, 3> for both arguments will
# reuse the previously specialized and inferred version and return <3, 2>.
var d = multiply_transpose(b, a);
# A new call with <3, 2> (instead of <2, 3>) for both dimensions will
# trigger another specialization of `multiply_transpose`.
var e = multiply_transpose(c, d);
# Finally, calling into `multiply_transpose` with incompatible shapes
# (<2, 3> and <3, 2>) will trigger a shape inference error.
var f = multiply_transpose(a, c);
}

1
include/CMakeLists.txt Normal file
View File

@ -0,0 +1 @@
add_subdirectory(hello)

24
include/Dialect.h Normal file
View File

@ -0,0 +1,24 @@
//
// Created by ricardo on 29/05/25.
//
#ifndef DIALECT_H
#define DIALECT_H
#include "mlir/Bytecode/BytecodeOpInterface.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/SymbolTable.h"
#include "mlir/Interfaces/CallInterfaces.h"
#include "mlir/Interfaces/FunctionInterfaces.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
/// Include the auto-generated header file containing the declaration of the toy
/// dialect.
#include "hello/Dialect.h.inc"
/// Include the auto-generated header file containing the declarations of the
/// toy operations.
#define GET_OP_CLASSES
#include "hello/Ops.h.inc"
#endif //DIALECT_H

24
include/MLIRGen.h Normal file
View File

@ -0,0 +1,24 @@
//
// Created by ricardo on 29/05/25.
//
#ifndef MLIRGEN_H
#define MLIRGEN_H
#include <mlir/IR/BuiltinOps.h>
#include "SyntaxNode.h"
namespace mlir
{
class MLIRContext;
template <typename OpTy>
class OwningOpRef;
}
namespace hello
{
mlir::OwningOpRef<mlir::ModuleOp> mlirGen(mlir::MLIRContext& context, Module& helloModule);
}
#endif //MLIRGEN_H

View File

@ -0,0 +1,6 @@
set(LLVM_TARGET_DEFINITIONS Ops.td)
mlir_tablegen(Ops.h.inc -gen-op-decls)
mlir_tablegen(Ops.cpp.inc -gen-op-defs)
mlir_tablegen(Dialect.h.inc -gen-dialect-decls)
mlir_tablegen(Dialect.cpp.inc -gen-dialect-defs)
add_public_tablegen_target(HelloOpsIncGen)

316
include/hello/Ops.td Normal file
View File

@ -0,0 +1,316 @@
#ifndef HELLO_OPS
#define HELLO_OPS
include "mlir/IR/OpBase.td"
include "mlir/Interfaces/FunctionInterfaces.td"
include "mlir/IR/SymbolInterfaces.td"
include "mlir/Interfaces/SideEffectInterfaces.td"
def Hello_Dialect : Dialect {
let name = "hello";
let cppNamespace = "::mlir::hello";
}
class Hello_Op<string mnemonic, list<Trait> traits = []> : Op<Hello_Dialect, mnemonic, traits>;
//===----------------------------------------------------------------------===//
// Hello Operations
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// ConstantOp
//===----------------------------------------------------------------------===//
// We define a hello operation by inheriting from our base 'Hello_Op' class above.
// Here we provide the mnemonic and a list of traits for the operation. The
// constant operation is marked as 'Pure' as it is a pure operation
// and may be removed if dead.
def ConstantOp : Hello_Op<"constant", [Pure]> {
// Provide a summary and description for this operation. This can be used to
// auto-generate documentation of the operations within our dialect.
let summary = "constant";
let description = [{
Constant operation turns a literal into an SSA value. The data is attached
to the operation as an attribute. For example:
```mlir
%0 = hello.constant dense<[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]>
: tensor<2x3xf64>
```
}];
// The constant operation takes an attribute as the only input.
let arguments = (ins F64ElementsAttr:$value);
// The constant operation returns a single value of TensorType.
let results = (outs F64Tensor);
// Indicate that the operation has a custom parser and printer method.
let hasCustomAssemblyFormat = 1;
// Add custom build methods for the constant operation. These method populates
// the `state` that MLIR uses to create operations, i.e. these are used when
// using `builder.create<ConstantOp>(...)`.
let builders = [
// Build a constant with a given constant tensor value.
OpBuilder<(ins "DenseElementsAttr":$value), [{
build($_builder, $_state, value.getType(), value);
}]>,
// Build a constant with a given constant floating-point value.
OpBuilder<(ins "double":$value)>
];
// Indicate that additional verification for this operation is necessary.
let hasVerifier = 1;
}
//===----------------------------------------------------------------------===//
// AddOp
//===----------------------------------------------------------------------===//
def AddOp : Hello_Op<"add"> {
let summary = "element-wise addition operation";
let description = [{
The "add" operation performs element-wise addition between two tensors.
The shapes of the tensor operands are expected to match.
}];
let arguments = (ins F64Tensor:$lhs, F64Tensor:$rhs);
let results = (outs F64Tensor);
// Indicate that the operation has a custom parser and printer method.
let hasCustomAssemblyFormat = 1;
// Allow building an AddOp with from the two input operands.
let builders = [
OpBuilder<(ins "Value":$lhs, "Value":$rhs)>
];
}
//===----------------------------------------------------------------------===//
// FuncOp
//===----------------------------------------------------------------------===//
def FuncOp : Hello_Op<"func", [
FunctionOpInterface, IsolatedFromAbove
]> {
let summary = "user defined function operation";
let description = [{
The "hello.func" operation represents a user defined function. These are
callable SSA-region operations that contain hello computations.
Example:
```mlir
hello.func @main() {
%0 = hello.constant dense<5.500000e+00> : tensor<f64>
%1 = hello.reshape(%0 : tensor<f64>) to tensor<2x2xf64>
hello.print %1 : tensor<2x2xf64>
hello.return
}
```
}];
let arguments = (ins
SymbolNameAttr:$sym_name,
TypeAttrOf<FunctionType>:$function_type,
OptionalAttr<DictArrayAttr>:$arg_attrs,
OptionalAttr<DictArrayAttr>:$res_attrs
);
let regions = (region AnyRegion:$body);
let builders = [OpBuilder<(ins
"StringRef":$name, "FunctionType":$type,
CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs)
>];
let extraClassDeclaration = [{
//===------------------------------------------------------------------===//
// FunctionOpInterface Methods
//===------------------------------------------------------------------===//
/// Returns the argument types of this function.
ArrayRef<Type> getArgumentTypes() { return getFunctionType().getInputs(); }
/// Returns the result types of this function.
ArrayRef<Type> getResultTypes() { return getFunctionType().getResults(); }
Region *getCallableRegion() { return &getBody(); }
}];
let hasCustomAssemblyFormat = 1;
let skipDefaultBuilders = 1;
}
//===----------------------------------------------------------------------===//
// GenericCallOp
//===----------------------------------------------------------------------===//
def GenericCallOp : Hello_Op<"generic_call"> {
let summary = "generic call operation";
let description = [{
Generic calls represent calls to a user defined function that needs to
be specialized for the shape of its arguments. The callee name is attached
as a symbol reference via an attribute. The arguments list must match the
arguments expected by the callee. For example:
```mlir
%4 = hello.generic_call @my_func(%1, %3)
: (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
```
This is only valid if a function named "my_func" exists and takes two
arguments.
}];
// The generic call operation takes a symbol reference attribute as the
// callee, and inputs for the call.
let arguments = (ins FlatSymbolRefAttr:$callee, Variadic<F64Tensor>:$inputs);
// The generic call operation returns a single value of TensorType.
let results = (outs F64Tensor);
// Specialize assembly printing and parsing using a declarative format.
let assemblyFormat = [{
$callee `(` $inputs `)` attr-dict `:` functional-type($inputs, results)
}];
// Add custom build methods for the generic call operation.
let builders = [
OpBuilder<(ins "StringRef":$callee, "ArrayRef<Value>":$arguments)>
];
}
//===----------------------------------------------------------------------===//
// MulOp
//===----------------------------------------------------------------------===//
def MulOp : Hello_Op<"mul"> {
let summary = "element-wise multiplication operation";
let description = [{
The "mul" operation performs element-wise multiplication between two
tensors. The shapes of the tensor operands are expected to match.
}];
let arguments = (ins F64Tensor:$lhs, F64Tensor:$rhs);
let results = (outs F64Tensor);
// Indicate that the operation has a custom parser and printer method.
let hasCustomAssemblyFormat = 1;
// Allow building a MulOp with from the two input operands.
let builders = [
OpBuilder<(ins "Value":$lhs, "Value":$rhs)>
];
}
//===----------------------------------------------------------------------===//
// PrintOp
//===----------------------------------------------------------------------===//
def PrintOp : Hello_Op<"print"> {
let summary = "print operation";
let description = [{
The "print" builtin operation prints a given input tensor, and produces
no results.
}];
// The print operation takes an input tensor to print.
let arguments = (ins F64Tensor:$input);
let assemblyFormat = "$input attr-dict `:` type($input)";
}
//===----------------------------------------------------------------------===//
// ReshapeOp
//===----------------------------------------------------------------------===//
def ReshapeOp : Hello_Op<"reshape"> {
let summary = "tensor reshape operation";
let description = [{
Reshape operation is transforming its input tensor into a new tensor with
the same number of elements but different shapes. For example:
```mlir
%0 = hello.reshape (%arg1 : tensor<10xf64>) to tensor<5x2xf64>
```
}];
let arguments = (ins F64Tensor:$input);
// We expect that the reshape operation returns a statically shaped tensor.
let results = (outs StaticShapeTensorOf<[F64]>);
let assemblyFormat = [{
`(` $input `:` type($input) `)` attr-dict `to` type(results)
}];
}
//===----------------------------------------------------------------------===//
// ReturnOp
//===----------------------------------------------------------------------===//
def ReturnOp : Hello_Op<"return", [Pure, HasParent<"FuncOp">,
Terminator]> {
let summary = "return operation";
let description = [{
The "return" operation represents a return operation within a function.
The operation takes an optional tensor operand and produces no results.
The operand type must match the signature of the function that contains
the operation. For example:
```mlir
hello.func @foo() -> tensor<2xf64> {
...
hello.return %0 : tensor<2xf64>
}
```
}];
// The return operation takes an optional input operand to return. This
// value must match the return type of the enclosing function.
let arguments = (ins Variadic<F64Tensor>:$input);
// The return operation only emits the input in the format if it is present.
let assemblyFormat = "($input^ `:` type($input))? attr-dict ";
// Allow building a ReturnOp with no return operand.
let builders = [
OpBuilder<(ins), [{ build($_builder, $_state, std::nullopt); }]>
];
// Provide extra utility definitions on the c++ operation class definition.
let extraClassDeclaration = [{
bool hasOperand() { return getNumOperands() != 0; }
}];
// Invoke a static verify method to verify this return operation.
let hasVerifier = 1;
}
//===----------------------------------------------------------------------===//
// TransposeOp
//===----------------------------------------------------------------------===//
def TransposeOp : Hello_Op<"transpose"> {
let summary = "transpose operation";
let arguments = (ins F64Tensor:$input);
let results = (outs F64Tensor);
let assemblyFormat = [{
`(` $input `:` type($input) `)` attr-dict `to` type(results)
}];
// Allow building a TransposeOp with from the input operand.
let builders = [
OpBuilder<(ins "Value":$input)>
];
// Invoke a static verify method to verify this transpose operation.
let hasVerifier = 1;
}
#endif

313
lib/Dialect.cpp Normal file
View File

@ -0,0 +1,313 @@
//
// Created by ricardo on 29/05/25.
//
#include "Dialect.h"
#include "hello/Dialect.cpp.inc"
#include <mlir/Interfaces/FunctionImplementation.h>
void mlir::hello::HelloDialect::initialize()
{
addOperations<
#define GET_OP_LIST
#include "hello/Ops.cpp.inc"
>();
}
using namespace mlir;
using namespace mlir::hello;
/// A generalized parser for binary operations. This parses the different forms
/// of 'printBinaryOp' below.
static ParseResult parseBinaryOp(OpAsmParser& parser,
OperationState& result)
{
SmallVector<OpAsmParser::UnresolvedOperand, 2> operands;
llvm::SMLoc operandsLoc = parser.getCurrentLocation();
mlir::Type type;
if (parser.parseOperandList(operands, /*requiredOperandCount=*/2) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(type))
return mlir::failure();
// If the type is a function type, it contains the input and result types of
// this operation.
if (mlir::FunctionType funcType = llvm::dyn_cast<mlir::FunctionType>(type))
{
if (parser.resolveOperands(operands, funcType.getInputs(), operandsLoc,
result.operands))
return mlir::failure();
result.addTypes(funcType.getResults());
return mlir::success();
}
// Otherwise, the parsed type is the type of both operands and results.
if (parser.resolveOperands(operands, type, result.operands))
return mlir::failure();
result.addTypes(type);
return mlir::success();
}
/// A generalized printer for binary operations. It prints in two different
/// forms depending on if all of the types match.
static void printBinaryOp(mlir::OpAsmPrinter& printer, mlir::Operation* op)
{
printer << " " << op->getOperands();
printer.printOptionalAttrDict(op->getAttrs());
printer << " : ";
// If all of the types are the same, print the type directly.
mlir::Type resultType = *op->result_type_begin();
if (llvm::all_of(op->getOperandTypes(),
[=](mlir::Type type) { return type == resultType; }))
{
printer << resultType;
return;
}
// Otherwise, print a functional type.
printer.printFunctionalType(op->getOperandTypes(), op->getResultTypes());
}
//===----------------------------------------------------------------------===//
// ConstantOp
//===----------------------------------------------------------------------===//
/// Build a constant operation.
/// The builder is passed as an argument, so is the state that this method is
/// expected to fill in order to build the operation.
void mlir::hello::ConstantOp::build(OpBuilder& builder, OperationState& state,
double value)
{
auto dataType = RankedTensorType::get({}, builder.getF64Type());
auto dataAttribute = DenseElementsAttr::get(dataType, value);
build(builder, state, dataType, dataAttribute);
}
/// The 'OpAsmParser' class provides a collection of methods for parsing
/// various punctuation, as well as attributes, operands, types, etc. Each of
/// these methods returns a `ParseResult`. This class is a wrapper around
/// `LogicalResult` that can be converted to a boolean `true` value on failure,
/// or `false` on success. This allows for easily chaining together a set of
/// parser rules. These rules are used to populate an `mlir::OperationState`
/// similarly to the `build` methods described above.
mlir::ParseResult ConstantOp::parse(mlir::OpAsmParser& parser,
mlir::OperationState& result)
{
mlir::DenseElementsAttr value;
if (parser.parseOptionalAttrDict(result.attributes) ||
parser.parseAttribute(value, "value", result.attributes))
return failure();
result.addTypes(value.getType());
return success();
}
/// The 'OpAsmPrinter' class is a stream that allows for formatting
/// strings, attributes, operands, types, etc.
void ConstantOp::print(mlir::OpAsmPrinter& printer)
{
printer << " ";
printer.printOptionalAttrDict((*this)->getAttrs(), /*elidedAttrs=*/{"value"});
printer << getValue();
}
/// Verifier for the constant operation. This corresponds to the
/// `let hasVerifier = 1` in the op definition.
mlir::LogicalResult ConstantOp::verify()
{
// If the return type of the constant is not an unranked tensor, the shape
// must match the shape of the attribute holding the data.
auto resultType = llvm::dyn_cast<mlir::RankedTensorType>(getResult().getType());
if (!resultType)
return success();
// Check that the rank of the attribute type matches the rank of the constant
// result type.
auto attrType = llvm::cast<mlir::RankedTensorType>(getValue().getType());
if (attrType.getRank() != resultType.getRank())
{
return emitOpError("return type must match the one of the attached value "
"attribute: ")
<< attrType.getRank() << " != " << resultType.getRank();
}
// Check that each of the dimensions match between the two types.
for (int dim = 0, dimE = attrType.getRank(); dim < dimE; ++dim)
{
if (attrType.getShape()[dim] != resultType.getShape()[dim])
{
return emitOpError(
"return type shape mismatches its attribute at dimension ")
<< dim << ": " << attrType.getShape()[dim]
<< " != " << resultType.getShape()[dim];
}
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// AddOp
//===----------------------------------------------------------------------===//
void AddOp::build(mlir::OpBuilder& builder, mlir::OperationState& state,
mlir::Value lhs, mlir::Value rhs)
{
state.addTypes(UnrankedTensorType::get(builder.getF64Type()));
state.addOperands({lhs, rhs});
}
mlir::ParseResult AddOp::parse(mlir::OpAsmParser& parser,
mlir::OperationState& result)
{
return parseBinaryOp(parser, result);
}
void AddOp::print(mlir::OpAsmPrinter& p) { printBinaryOp(p, *this); }
//===----------------------------------------------------------------------===//
// GenericCallOp
//===----------------------------------------------------------------------===//
void GenericCallOp::build(mlir::OpBuilder& builder, mlir::OperationState& state,
StringRef callee, ArrayRef<mlir::Value> arguments)
{
// Generic call always returns an unranked Tensor initially.
state.addTypes(UnrankedTensorType::get(builder.getF64Type()));
state.addOperands(arguments);
state.addAttribute("callee",
mlir::SymbolRefAttr::get(builder.getContext(), callee));
}
//===----------------------------------------------------------------------===//
// FuncOp
//===----------------------------------------------------------------------===//
void FuncOp::build(mlir::OpBuilder& builder, mlir::OperationState& state,
llvm::StringRef name, mlir::FunctionType type,
llvm::ArrayRef<mlir::NamedAttribute> attrs)
{
// FunctionOpInterface provides a convenient `build` method that will populate
// the state of our FuncOp, and create an entry block.
buildWithEntryBlock(builder, state, name, type, attrs, type.getInputs());
}
mlir::ParseResult FuncOp::parse(OpAsmParser& parser,
OperationState& result)
{
// Dispatch to the FunctionOpInterface provided utility method that parses the
// function operation.
auto buildFuncType =
[](Builder& builder, ArrayRef<Type> argTypes,
ArrayRef<Type> results,
function_interface_impl::VariadicFlag,
std::string&)
{
return builder.getFunctionType(argTypes, results);
};
return mlir::function_interface_impl::parseFunctionOp(
parser, result, /*allowVariadic=*/false,
getFunctionTypeAttrName(result.name), buildFuncType,
getArgAttrsAttrName(result.name), getResAttrsAttrName(result.name));
}
void FuncOp::print(mlir::OpAsmPrinter& p)
{
// Dispatch to the FunctionOpInterface provided utility method that prints the
// function operation.
mlir::function_interface_impl::printFunctionOp(
p, *this, /*isVariadic=*/false, getFunctionTypeAttrName(),
getArgAttrsAttrName(), getResAttrsAttrName());
}
//===----------------------------------------------------------------------===//
// MulOp
//===----------------------------------------------------------------------===//
void MulOp::build(mlir::OpBuilder& builder, mlir::OperationState& state,
mlir::Value lhs, mlir::Value rhs)
{
state.addTypes(UnrankedTensorType::get(builder.getF64Type()));
state.addOperands({lhs, rhs});
}
mlir::ParseResult MulOp::parse(mlir::OpAsmParser& parser,
mlir::OperationState& result)
{
return parseBinaryOp(parser, result);
}
void MulOp::print(mlir::OpAsmPrinter& p) { printBinaryOp(p, *this); }
//===----------------------------------------------------------------------===//
// ReturnOp
//===----------------------------------------------------------------------===//
mlir::LogicalResult ReturnOp::verify()
{
// We know that the parent operation is a function, because of the 'HasParent'
// trait attached to the operation definition.
auto function = cast<FuncOp>((*this)->getParentOp());
/// ReturnOps can only have a single optional operand.
if (getNumOperands() > 1)
return emitOpError() << "expects at most 1 return operand";
// The operand number and types must match the function signature.
const auto& results = function.getFunctionType().getResults();
if (getNumOperands() != results.size())
return emitOpError() << "does not return the same number of values ("
<< getNumOperands() << ") as the enclosing function ("
<< results.size() << ")";
// If the operation does not have an input, we are done.
if (!hasOperand())
return mlir::success();
auto inputType = *operand_type_begin();
auto resultType = results.front();
// Check that the result type of the function matches the operand type.
if (inputType == resultType || llvm::isa<mlir::UnrankedTensorType>(inputType) ||
llvm::isa<mlir::UnrankedTensorType>(resultType))
return mlir::success();
return emitError() << "type of return operand (" << inputType
<< ") doesn't match function result type (" << resultType
<< ")";
}
//===----------------------------------------------------------------------===//
// TransposeOp
//===----------------------------------------------------------------------===//
void TransposeOp::build(mlir::OpBuilder& builder, mlir::OperationState& state,
mlir::Value value)
{
state.addTypes(UnrankedTensorType::get(builder.getF64Type()));
state.addOperands(value);
}
mlir::LogicalResult TransposeOp::verify()
{
auto inputType = llvm::dyn_cast<RankedTensorType>(getOperand().getType());
auto resultType = llvm::dyn_cast<RankedTensorType>(getType());
if (!inputType || !resultType)
return mlir::success();
auto inputShape = inputType.getShape();
if (!std::equal(inputShape.begin(), inputShape.end(),
resultType.getShape().rbegin()))
{
return emitError()
<< "expected result shape to be a transpose of the input";
}
return mlir::success();
}
#define GET_OP_CLASSES
#include "hello/Ops.cpp.inc"

464
lib/MLIRGen.cpp Normal file
View File

@ -0,0 +1,464 @@
//
// Created by ricardo on 29/05/25.
//
#include "MLIRGen.h"
#include <numeric>
#include "Dialect.h"
#include <mlir/IR/Builders.h>
#include <mlir/IR/BuiltinOps.h>
#include <mlir/IR/BuiltinTypes.h>
#include <mlir/IR/Verifier.h>
#include <llvm/ADT/ScopedHashTable.h>
using namespace mlir::hello;
using namespace hello;
using llvm::ArrayRef;
using llvm::cast;
using llvm::dyn_cast;
using llvm::isa;
using llvm::ScopedFatalErrorHandler;
using llvm::SmallVector;
using llvm::StringRef;
using llvm::Twine;
namespace
{
class MLIRGenImpl
{
public:
MLIRGenImpl(mlir::MLIRContext& context) : builder(&context)
{
}
/// Public API: convert the AST for a Toy module (source file) to an MLIR
/// Module operation.
mlir::ModuleOp mlirGen(Module& moduleAST)
{
// We create an empty MLIR module and codegen functions one at a time and
// add them to the module.
theModule = mlir::ModuleOp::create(builder.getUnknownLoc());
for (Function& f : moduleAST)
mlirGen(f);
// Verify the module after we have finished constructing it, this will check
// the structural properties of the IR and invoke any specific verifiers we
// have on the Toy operations.
if (mlir::failed(mlir::verify(theModule)))
{
theModule.emitError("module verification error");
return nullptr;
}
return theModule;
}
private:
/// A "module" matches a Toy source file: containing a list of functions.
mlir::ModuleOp theModule;
/// The builder is a helper class to create IR inside a function. The builder
/// is stateful, in particular it keeps an "insertion point": this is where
/// the next operations will be introduced.
mlir::OpBuilder builder;
/// The symbol table maps a variable name to a value in the current scope.
/// Entering a function creates a new scope, and the function arguments are
/// added to the mapping. When the processing of a function is terminated, the
/// scope is destroyed and the mappings created in this scope are dropped.
llvm::ScopedHashTable<StringRef, mlir::Value> symbolTable;
/// Helper conversion for a Toy AST location to an MLIR location.
mlir::Location loc(const Location& loc)
{
return mlir::FileLineColLoc::get(builder.getStringAttr(*loc.file), loc.line,
loc.col);
}
/// Declare a variable in the current scope, return success if the variable
/// wasn't declared yet.
mlir::LogicalResult declare(llvm::StringRef var, mlir::Value value)
{
if (symbolTable.count(var))
return mlir::failure();
symbolTable.insert(var, value);
return mlir::success();
}
/// Create the prototype for an MLIR function with as many arguments as the
/// provided Toy AST prototype.
FuncOp mlirGen(FunctionPrototype& proto)
{
auto location = loc(proto.getLocation());
// This is a generic function, the return type will be inferred later.
// Arguments type are uniformly unranked tensors.
llvm::SmallVector<mlir::Type, 4> argTypes(proto.getParameters().size(),
getType(ValueType{}));
auto funcType = builder.getFunctionType(argTypes, std::nullopt);
return builder.create<FuncOp>(location, proto.getName(),
funcType);
}
/// Emit a new function and add it to the MLIR module.
FuncOp mlirGen(Function& funcAST)
{
// Create a scope in the symbol table to hold variable declarations.
llvm::ScopedHashTableScope varScope(symbolTable);
// Create an MLIR function for the given prototype.
builder.setInsertionPointToEnd(theModule.getBody());
FuncOp function = mlirGen(*funcAST.getPrototype());
if (!function)
return nullptr;
// Let's start the body of the function now!
mlir::Block& entryBlock = function.front();
auto protoArgs = funcAST.getPrototype()->getParameters();
// Declare all the function arguments in the symbol table.
for (const auto nameValue :
llvm::zip(protoArgs, entryBlock.getArguments()))
{
if (failed(declare(std::get<0>(nameValue)->getName(),
std::get<1>(nameValue))))
return nullptr;
}
// Set the insertion point in the builder to the beginning of the function
// body, it will be used throughout the codegen to create operations in this
// function.
builder.setInsertionPointToStart(&entryBlock);
// Emit the body of the function.
if (mlir::failed(mlirGen(*funcAST.getBody())))
{
function.erase();
return nullptr;
}
// Implicitly return void if no return statement was emitted.
// FIXME: we may fix the parser instead to always return the last expression
// (this would possibly help the REPL case later)
ReturnOp returnOp;
if (!entryBlock.empty())
returnOp = dyn_cast<ReturnOp>(entryBlock.back());
if (!returnOp)
{
builder.create<ReturnOp>(loc(funcAST.getPrototype()->getLocation()));
}
else if (returnOp.hasOperand())
{
// Otherwise, if this return operation has an operand then add a result to
// the function.
function.setType(builder.getFunctionType(
function.getFunctionType().getInputs(), getType(ValueType{})));
}
return function;
}
/// Emit a binary operation
mlir::Value mlirGen(BinaryExpression& binop)
{
// First emit the operations for each side of the operation before emitting
// the operation itself. For example if the expression is `a + foo(a)`
// 1) First it will visiting the LHS, which will return a reference to the
// value holding `a`. This value should have been emitted at declaration
// time and registered in the symbol table, so nothing would be
// codegen'd. If the value is not in the symbol table, an error has been
// emitted and nullptr is returned.
// 2) Then the RHS is visited (recursively) and a call to `foo` is emitted
// and the result value is returned. If an error occurs we get a nullptr
// and propagate.
//
mlir::Value lhs = mlirGen(*binop.getLeft());
if (!lhs)
return nullptr;
mlir::Value rhs = mlirGen(*binop.getRight());
if (!rhs)
return nullptr;
auto location = loc(binop.getLocation());
// Derive the operation name from the binary operator. At the moment we only
// support '+' and '*'.
switch (binop.getOperator())
{
case '+':
return builder.create<AddOp>(location, lhs, rhs);
case '*':
return builder.create<MulOp>(location, lhs, rhs);
default:
emitError(location, "invalid binary operator '") << binop.getOperator() << "'";
return nullptr;
}
}
/// This is a reference to a variable in an expression. The variable is
/// expected to have been declared and so should have a value in the symbol
/// table, otherwise emit an error and return nullptr.
mlir::Value mlirGen(VariableExpression& expr)
{
if (auto variable = symbolTable.lookup(expr.getName()))
return variable;
emitError(loc(expr.getLocation()), "error: unknown variable '")
<< expr.getName() << "'";
return nullptr;
}
/// Emit a return operation. This will return failure if any generation fails.
mlir::LogicalResult mlirGen(ReturnExpression& ret)
{
auto location = loc(ret.getLocation());
// 'return' takes an optional expression, handle that case here.
mlir::Value expr = nullptr;
if (ret.getReturnExpression().has_value())
{
expr = mlirGen(**ret.getReturnExpression());
if (!expr)
return mlir::failure();
}
// Otherwise, this return operation has zero operands.
builder.create<ReturnOp>(location,
expr ? ArrayRef(expr) : ArrayRef<mlir::Value>());
return mlir::success();
}
/// Emit a literal/constant array. It will be emitted as a flattened array of
/// data in an Attribute attached to a `toy.constant` operation.
/// See documentation on [Attributes](LangRef.md#attributes) for more details.
/// Here is an excerpt:
///
/// Attributes are the mechanism for specifying constant data in MLIR in
/// places where a variable is never allowed [...]. They consist of a name
/// and a concrete attribute value. The set of expected attributes, their
/// structure, and their interpretation are all contextually dependent on
/// what they are attached to.
///
/// Example, the source level statement:
/// var a<2, 3> = [[1, 2, 3], [4, 5, 6]];
/// will be converted to:
/// %0 = "toy.constant"() {value: dense<tensor<2x3xf64>,
/// [[1.000000e+00, 2.000000e+00, 3.000000e+00],
/// [4.000000e+00, 5.000000e+00, 6.000000e+00]]>} : () -> tensor<2x3xf64>
///
mlir::Value mlirGen(LiteralExpression& lit)
{
auto type = getType(lit.getDimensions());
// The attribute is a vector with a floating point value per element
// (number) in the array, see `collectData()` below for more details.
std::vector<double> data;
data.reserve(std::accumulate(lit.getDimensions().begin(), lit.getDimensions().end(), 1,
std::multiplies<int>()));
collectData(lit, data);
// The type of this attribute is tensor of 64-bit floating-point with the
// shape of the literal.
mlir::Type elementType = builder.getF64Type();
auto dataType = mlir::RankedTensorType::get(lit.getDimensions(), elementType);
// This is the actual attribute that holds the list of values for this
// tensor literal.
auto dataAttribute =
mlir::DenseElementsAttr::get(dataType, llvm::ArrayRef(data));
// Build the MLIR op `toy.constant`. This invokes the `ConstantOp::build`
// method.
return builder.create<ConstantOp>(loc(lit.getLocation()), type, dataAttribute);
}
/// Recursive helper function to accumulate the data that compose an array
/// literal. It flattens the nested structure in the supplied vector. For
/// example with this array:
/// [[1, 2], [3, 4]]
/// we will generate:
/// [ 1, 2, 3, 4 ]
/// Individual numbers are represented as doubles.
/// Attributes are the way MLIR attaches constant to operations.
void collectData(ExpressionNodeBase& expr, std::vector<double>& data)
{
if (auto* lit = dyn_cast<LiteralExpression>(&expr))
{
for (auto& value : lit->getValues())
collectData(*value, data);
return;
}
assert(isa<NumberExpression>(expr) && "expected literal or number expr");
data.push_back(cast<NumberExpression>(expr).getValue());
}
/// Emit a call expression. It emits specific operations for the `transpose`
/// builtin. Other identifiers are assumed to be user-defined functions.
mlir::Value mlirGen(CallExpression& call)
{
llvm::StringRef callee = call.getName();
auto location = loc(call.getLocation());
// Codegen the operands first.
SmallVector<mlir::Value, 4> operands;
for (auto& expr : call.getArguments())
{
auto arg = mlirGen(*expr);
if (!arg)
return nullptr;
operands.push_back(arg);
}
// Builtin calls have their custom operation, meaning this is a
// straightforward emission.
if (callee == "transpose")
{
if (call.getArguments().size() != 1)
{
emitError(location, "MLIR codegen encountered an error: toy.transpose "
"does not accept multiple arguments");
return nullptr;
}
return builder.create<TransposeOp>(location, operands[0]);
}
// Otherwise this is a call to a user-defined function. Calls to
// user-defined functions are mapped to a custom call that takes the callee
// name as an attribute.
return builder.create<GenericCallOp>(location, callee, operands);
}
/// Emit a print expression. It emits specific operations for two builtins:
/// transpose(x) and print(x).
mlir::LogicalResult mlirGen(PrintExpression& call)
{
auto arg = mlirGen(*call.getArgument());
if (!arg)
return mlir::failure();
builder.create<PrintOp>(loc(call.getLocation()), arg);
return mlir::success();
}
/// Emit a constant for a single number (FIXME: semantic? broadcast?)
mlir::Value mlirGen(NumberExpression& num)
{
return builder.create<ConstantOp>(loc(num.getLocation()), num.getValue());
}
/// Dispatch codegen for the right expression subclass using RTTI.
mlir::Value mlirGen(ExpressionNodeBase& expr)
{
switch (expr.getKind())
{
case ExpressionNodeBase::BinaryOperation:
return mlirGen(cast<BinaryExpression>(expr));
case ExpressionNodeBase::Variable:
return mlirGen(cast<VariableExpression>(expr));
case ExpressionNodeBase::Literal:
return mlirGen(cast<LiteralExpression>(expr));
case ExpressionNodeBase::Call:
return mlirGen(cast<CallExpression>(expr));
case ExpressionNodeBase::Number:
return mlirGen(cast<NumberExpression>(expr));
default:
emitError(loc(expr.getLocation()))
<< "MLIR codegen encountered an unhandled expr kind '"
<< Twine(expr.getKind()) << "'";
return nullptr;
}
}
/// Handle a variable declaration, we'll codegen the expression that forms the
/// initializer and record the value in the symbol table before returning it.
/// Future expressions will be able to reference this variable through symbol
/// table lookup.
mlir::Value mlirGen(VariableDeclarationExpression& vardecl)
{
auto* init = vardecl.getInitialValue();
if (!init)
{
emitError(loc(vardecl.getLocation()),
"missing initializer in variable declaration");
return nullptr;
}
mlir::Value value = mlirGen(*init);
if (!value)
return nullptr;
// We have the initializer value, but in case the variable was declared
// with specific shape, we emit a "reshape" operation. It will get
// optimized out later as needed.
if (!vardecl.getType().shape.empty())
{
value = builder.create<ReshapeOp>(loc(vardecl.getLocation()),
getType(vardecl.getType()), value);
}
// Register the value in the symbol table.
if (failed(declare(vardecl.getName(), value)))
return nullptr;
return value;
}
/// Codegen a list of expression, return failure if one of them hit an error.
mlir::LogicalResult mlirGen(ExpressionList& blockAST)
{
llvm::ScopedHashTableScope varScope(symbolTable);
for (auto& expr : blockAST)
{
// Specific handling for variable declarations, return statement, and
// print. These can only appear in block list and not in nested
// expressions.
if (auto* vardecl = dyn_cast<VariableDeclarationExpression>(expr.get()))
{
if (!mlirGen(*vardecl))
return mlir::failure();
continue;
}
if (auto* ret = dyn_cast<ReturnExpression>(expr.get()))
return mlirGen(*ret);
if (auto* print = dyn_cast<PrintExpression>(expr.get()))
{
if (mlir::failed(mlirGen(*print)))
return mlir::success();
continue;
}
// Generic expression dispatch codegen.
if (!mlirGen(*expr))
return mlir::failure();
}
return mlir::success();
}
/// Build a tensor type from a list of shape dimensions.
mlir::Type getType(ArrayRef<int64_t> shape)
{
// If the shape is empty, then this type is unranked.
if (shape.empty())
return mlir::UnrankedTensorType::get(builder.getF64Type());
// Otherwise, we use the given shape.
return mlir::RankedTensorType::get(shape, builder.getF64Type());
}
/// Build an MLIR type from a Toy AST variable type (forward to the generic
/// getType above).
mlir::Type getType(const ValueType& type) { return getType(type.shape); }
};
}
namespace hello
{
mlir::OwningOpRef<mlir::ModuleOp> mlirGen(mlir::MLIRContext& context, Module& helloModule)
{
return MLIRGenImpl(context).mlirGen(helloModule);
}
}

View File

@ -4,6 +4,19 @@
#include <llvm/Support/CommandLine.h>
#include <llvm/Support/ErrorOr.h>
#include <llvm/Support/MemoryBuffer.h>
#include <llvm/Support/SourceMgr.h>
#include <mlir/IR/BuiltinOps.h.inc>
#include <mlir/IR/BuiltinOps.h.inc>
#include <mlir/IR/OwningOpRef.h>
#include <mlir/Parser/Parser.h>
#include "Dialect.h"
#include "MLIRGen.h"
namespace mlir
{
class ModuleOp;
}
static llvm::cl::opt<std::string> inputFilename(llvm::cl::Positional,
llvm::cl::desc("<input hello file>"),
@ -12,11 +25,21 @@ static llvm::cl::opt<std::string> inputFilename(llvm::cl::Positional,
namespace
{
enum Action { None, DumpSyntaxNode };
enum Action { None, DumpSyntaxNode, DumpMLIR };
enum InputType { Hello, MLIR };
}
static llvm::cl::opt<InputType> inputType("x", llvm::cl::init(Hello),
llvm::cl::desc("Decided the kind of input desired."),
llvm::cl::values(
clEnumValN(Hello, "hello", "load the input file as a hello source.")),
llvm::cl::values(
clEnumValN(MLIR, "mlir", "load the input file as a mlir source.")));
static llvm::cl::opt<Action> emitAction("emit", llvm::cl::desc("Select the kind of output desired"),
llvm::cl::values(clEnumValN(DumpSyntaxNode, "ast", "Dump syntax node")));
llvm::cl::values(clEnumValN(DumpSyntaxNode, "ast", "Dump syntax node")),
llvm::cl::values(clEnumValN(DumpMLIR, "mlir", "Dump mlir code")));
std::unique_ptr<hello::Module> parseInputFile(llvm::StringRef filename)
{
@ -33,6 +56,53 @@ std::unique_ptr<hello::Module> parseInputFile(llvm::StringRef filename)
return parser.parseModule();
}
int dumpMLIR()
{
mlir::MLIRContext context;
context.getOrLoadDialect<mlir::hello::HelloDialect>();
if (inputType != MLIR && !llvm::StringRef(inputFilename).ends_with(".mlir"))
{
auto module = parseInputFile(inputFilename);
if (module == nullptr)
{
return 1;
}
mlir::OwningOpRef<mlir::ModuleOp> mlirModule = hello::mlirGen(context, *module);
if (!mlirModule)
{
return 1;
}
mlirModule->dump();
return 0;
}
// Then the input file is mlir
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> fileOrErr =
llvm::MemoryBuffer::getFileOrSTDIN(inputFilename);
if (std::error_code ec = fileOrErr.getError())
{
llvm::errs() << "Could not open input file: " << ec.message() << "\n";
return 1;
}
// Parse the input mlir.
llvm::SourceMgr sourceMgr;
sourceMgr.AddNewSourceBuffer(std::move(*fileOrErr), llvm::SMLoc());
mlir::OwningOpRef<mlir::ModuleOp> module =
mlir::parseSourceFile<mlir::ModuleOp>(sourceMgr, &context);
if (!module)
{
llvm::errs() << "Error can't load file " << inputFilename << "\n";
return 1;
}
module->dump();
return 0;
}
int main(int argc, char** argv)
{
llvm::cl::ParseCommandLineOptions(argc, argv, "Hello MLIR Compiler\n");
@ -49,6 +119,9 @@ int main(int argc, char** argv)
case DumpSyntaxNode:
module->dump();
return 0;
case DumpMLIR:
dumpMLIR();
return 0;
default:
llvm::errs() << "Unrecognized action\n";
return 1;