feat: toy tutorial chapter 4.
Signed-off-by: jackfiled <xcrenchangjun@outlook.com>
This commit is contained in:
214
lib/Dialect.cpp
214
lib/Dialect.cpp
@@ -6,6 +6,49 @@
|
||||
#include "hello/Dialect.cpp.inc"
|
||||
|
||||
#include <mlir/Interfaces/FunctionImplementation.h>
|
||||
#include <mlir/Transforms/InliningUtils.h>
|
||||
#include <oneapi/tbb/detail/_template_helpers.h>
|
||||
|
||||
struct HelloDialectInlinerInterface : mlir::DialectInlinerInterface
|
||||
{
|
||||
using DialectInlinerInterface::DialectInlinerInterface;
|
||||
|
||||
bool isLegalToInline(mlir::Operation* call, mlir::Operation* callable, bool wouldBeCloned) const override
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool isLegalToInline(mlir::Region* dest, mlir::Region* src, bool wouldBeCloned,
|
||||
mlir::IRMapping& valueMapping) const override
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool isLegalToInline(mlir::Operation* op, mlir::Region* dest, bool wouldBeCloned,
|
||||
mlir::IRMapping& valueMapping) const override
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
void handleTerminator(mlir::Operation* op, mlir::ValueRange returnValues) const override
|
||||
{
|
||||
// Only the `hello.returnOp` is the function terminator
|
||||
auto returnOp = llvm::cast<mlir::hello::ReturnOp>(op);
|
||||
|
||||
assert(returnOp.getNumOperands() == returnValues.size());
|
||||
|
||||
for (const auto& it : llvm::enumerate(returnOp.getOperands()))
|
||||
{
|
||||
returnValues[it.index()].replaceAllUsesWith(it.value());
|
||||
}
|
||||
}
|
||||
|
||||
mlir::Operation* materializeCallConversion(mlir::OpBuilder& builder, mlir::Value input, mlir::Type resultType,
|
||||
mlir::Location conversionLoc) const override
|
||||
{
|
||||
return builder.create<mlir::hello::CastOp>(conversionLoc, resultType, input);
|
||||
}
|
||||
};
|
||||
|
||||
void mlir::hello::HelloDialect::initialize()
|
||||
{
|
||||
@@ -13,6 +56,7 @@ void mlir::hello::HelloDialect::initialize()
|
||||
#define GET_OP_LIST
|
||||
#include "hello/Ops.cpp.inc"
|
||||
>();
|
||||
addInterfaces<HelloDialectInlinerInterface>();
|
||||
}
|
||||
|
||||
using namespace mlir;
|
||||
@@ -25,43 +69,43 @@ static ParseResult parseBinaryOp(OpAsmParser& parser,
|
||||
OperationState& result)
|
||||
{
|
||||
SmallVector<OpAsmParser::UnresolvedOperand, 2> operands;
|
||||
llvm::SMLoc operandsLoc = parser.getCurrentLocation();
|
||||
mlir::Type type;
|
||||
SMLoc operandsLoc = parser.getCurrentLocation();
|
||||
Type type;
|
||||
if (parser.parseOperandList(operands, /*requiredOperandCount=*/2) ||
|
||||
parser.parseOptionalAttrDict(result.attributes) ||
|
||||
parser.parseColonType(type))
|
||||
return mlir::failure();
|
||||
return failure();
|
||||
|
||||
// If the type is a function type, it contains the input and result types of
|
||||
// this operation.
|
||||
if (mlir::FunctionType funcType = llvm::dyn_cast<mlir::FunctionType>(type))
|
||||
if (FunctionType funcType = llvm::dyn_cast<FunctionType>(type))
|
||||
{
|
||||
if (parser.resolveOperands(operands, funcType.getInputs(), operandsLoc,
|
||||
result.operands))
|
||||
return mlir::failure();
|
||||
return failure();
|
||||
result.addTypes(funcType.getResults());
|
||||
return mlir::success();
|
||||
return success();
|
||||
}
|
||||
|
||||
// Otherwise, the parsed type is the type of both operands and results.
|
||||
if (parser.resolveOperands(operands, type, result.operands))
|
||||
return mlir::failure();
|
||||
return failure();
|
||||
result.addTypes(type);
|
||||
return mlir::success();
|
||||
return success();
|
||||
}
|
||||
|
||||
/// A generalized printer for binary operations. It prints in two different
|
||||
/// forms depending on if all of the types match.
|
||||
static void printBinaryOp(mlir::OpAsmPrinter& printer, mlir::Operation* op)
|
||||
static void printBinaryOp(OpAsmPrinter& printer, Operation* op)
|
||||
{
|
||||
printer << " " << op->getOperands();
|
||||
printer.printOptionalAttrDict(op->getAttrs());
|
||||
printer << " : ";
|
||||
|
||||
// If all of the types are the same, print the type directly.
|
||||
mlir::Type resultType = *op->result_type_begin();
|
||||
Type resultType = *op->result_type_begin();
|
||||
if (llvm::all_of(op->getOperandTypes(),
|
||||
[=](mlir::Type type) { return type == resultType; }))
|
||||
[=](Type type) { return type == resultType; }))
|
||||
{
|
||||
printer << resultType;
|
||||
return;
|
||||
@@ -78,8 +122,8 @@ static void printBinaryOp(mlir::OpAsmPrinter& printer, mlir::Operation* op)
|
||||
/// Build a constant operation.
|
||||
/// The builder is passed as an argument, so is the state that this method is
|
||||
/// expected to fill in order to build the operation.
|
||||
void mlir::hello::ConstantOp::build(OpBuilder& builder, OperationState& state,
|
||||
double value)
|
||||
void ConstantOp::build(OpBuilder& builder, OperationState& state,
|
||||
double value)
|
||||
{
|
||||
auto dataType = RankedTensorType::get({}, builder.getF64Type());
|
||||
auto dataAttribute = DenseElementsAttr::get(dataType, value);
|
||||
@@ -93,10 +137,10 @@ void mlir::hello::ConstantOp::build(OpBuilder& builder, OperationState& state,
|
||||
/// or `false` on success. This allows for easily chaining together a set of
|
||||
/// parser rules. These rules are used to populate an `mlir::OperationState`
|
||||
/// similarly to the `build` methods described above.
|
||||
mlir::ParseResult ConstantOp::parse(mlir::OpAsmParser& parser,
|
||||
mlir::OperationState& result)
|
||||
ParseResult ConstantOp::parse(OpAsmParser& parser,
|
||||
OperationState& result)
|
||||
{
|
||||
mlir::DenseElementsAttr value;
|
||||
DenseElementsAttr value;
|
||||
if (parser.parseOptionalAttrDict(result.attributes) ||
|
||||
parser.parseAttribute(value, "value", result.attributes))
|
||||
return failure();
|
||||
@@ -107,7 +151,7 @@ mlir::ParseResult ConstantOp::parse(mlir::OpAsmParser& parser,
|
||||
|
||||
/// The 'OpAsmPrinter' class is a stream that allows for formatting
|
||||
/// strings, attributes, operands, types, etc.
|
||||
void ConstantOp::print(mlir::OpAsmPrinter& printer)
|
||||
void ConstantOp::print(OpAsmPrinter& printer)
|
||||
{
|
||||
printer << " ";
|
||||
printer.printOptionalAttrDict((*this)->getAttrs(), /*elidedAttrs=*/{"value"});
|
||||
@@ -116,17 +160,17 @@ void ConstantOp::print(mlir::OpAsmPrinter& printer)
|
||||
|
||||
/// Verifier for the constant operation. This corresponds to the
|
||||
/// `let hasVerifier = 1` in the op definition.
|
||||
mlir::LogicalResult ConstantOp::verify()
|
||||
LogicalResult ConstantOp::verify()
|
||||
{
|
||||
// If the return type of the constant is not an unranked tensor, the shape
|
||||
// must match the shape of the attribute holding the data.
|
||||
auto resultType = llvm::dyn_cast<mlir::RankedTensorType>(getResult().getType());
|
||||
auto resultType = llvm::dyn_cast<RankedTensorType>(getResult().getType());
|
||||
if (!resultType)
|
||||
return success();
|
||||
|
||||
// Check that the rank of the attribute type matches the rank of the constant
|
||||
// result type.
|
||||
auto attrType = llvm::cast<mlir::RankedTensorType>(getValue().getType());
|
||||
auto attrType = llvm::cast<RankedTensorType>(getValue().getType());
|
||||
if (attrType.getRank() != resultType.getRank())
|
||||
{
|
||||
return emitOpError("return type must match the one of the attached value "
|
||||
@@ -145,57 +189,82 @@ mlir::LogicalResult ConstantOp::verify()
|
||||
<< " != " << resultType.getShape()[dim];
|
||||
}
|
||||
}
|
||||
return mlir::success();
|
||||
return success();
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// AddOp
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
void AddOp::build(mlir::OpBuilder& builder, mlir::OperationState& state,
|
||||
mlir::Value lhs, mlir::Value rhs)
|
||||
void AddOp::build(OpBuilder& builder, OperationState& state,
|
||||
Value lhs, Value rhs)
|
||||
{
|
||||
state.addTypes(UnrankedTensorType::get(builder.getF64Type()));
|
||||
state.addOperands({lhs, rhs});
|
||||
}
|
||||
|
||||
mlir::ParseResult AddOp::parse(mlir::OpAsmParser& parser,
|
||||
mlir::OperationState& result)
|
||||
ParseResult AddOp::parse(OpAsmParser& parser,
|
||||
OperationState& result)
|
||||
{
|
||||
return parseBinaryOp(parser, result);
|
||||
}
|
||||
|
||||
void AddOp::print(mlir::OpAsmPrinter& p) { printBinaryOp(p, *this); }
|
||||
void AddOp::print(OpAsmPrinter& p) { printBinaryOp(p, *this); }
|
||||
|
||||
void AddOp::inferShapes()
|
||||
{
|
||||
getResult().setType(getLhs().getType());
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// GenericCallOp
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
void GenericCallOp::build(mlir::OpBuilder& builder, mlir::OperationState& state,
|
||||
StringRef callee, ArrayRef<mlir::Value> arguments)
|
||||
void GenericCallOp::build(OpBuilder& builder, OperationState& state,
|
||||
StringRef callee, ArrayRef<Value> arguments)
|
||||
{
|
||||
// Generic call always returns an unranked Tensor initially.
|
||||
state.addTypes(UnrankedTensorType::get(builder.getF64Type()));
|
||||
state.addOperands(arguments);
|
||||
state.addAttribute("callee",
|
||||
mlir::SymbolRefAttr::get(builder.getContext(), callee));
|
||||
SymbolRefAttr::get(builder.getContext(), callee));
|
||||
}
|
||||
|
||||
CallInterfaceCallable GenericCallOp::getCallableForCallee()
|
||||
{
|
||||
return (*this)->getAttrOfType<SymbolRefAttr>("callee");
|
||||
}
|
||||
|
||||
void GenericCallOp::setCalleeFromCallable(CallInterfaceCallable callee)
|
||||
{
|
||||
(*this)->setAttr("callee", mlir::cast<SymbolRefAttr>(callee));
|
||||
}
|
||||
|
||||
Operation::operand_range GenericCallOp::getArgOperands()
|
||||
{
|
||||
return getInputs();
|
||||
}
|
||||
|
||||
MutableOperandRange GenericCallOp::getArgOperandsMutable()
|
||||
{
|
||||
return getInputsMutable();
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// FuncOp
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
void FuncOp::build(mlir::OpBuilder& builder, mlir::OperationState& state,
|
||||
llvm::StringRef name, mlir::FunctionType type,
|
||||
llvm::ArrayRef<mlir::NamedAttribute> attrs)
|
||||
void FuncOp::build(OpBuilder& builder, OperationState& state,
|
||||
StringRef name, FunctionType type,
|
||||
ArrayRef<NamedAttribute> attrs)
|
||||
{
|
||||
// FunctionOpInterface provides a convenient `build` method that will populate
|
||||
// the state of our FuncOp, and create an entry block.
|
||||
buildWithEntryBlock(builder, state, name, type, attrs, type.getInputs());
|
||||
}
|
||||
|
||||
mlir::ParseResult FuncOp::parse(OpAsmParser& parser,
|
||||
OperationState& result)
|
||||
ParseResult FuncOp::parse(OpAsmParser& parser,
|
||||
OperationState& result)
|
||||
{
|
||||
// Dispatch to the FunctionOpInterface provided utility method that parses the
|
||||
// function operation.
|
||||
@@ -208,17 +277,17 @@ mlir::ParseResult FuncOp::parse(OpAsmParser& parser,
|
||||
return builder.getFunctionType(argTypes, results);
|
||||
};
|
||||
|
||||
return mlir::function_interface_impl::parseFunctionOp(
|
||||
return function_interface_impl::parseFunctionOp(
|
||||
parser, result, /*allowVariadic=*/false,
|
||||
getFunctionTypeAttrName(result.name), buildFuncType,
|
||||
getArgAttrsAttrName(result.name), getResAttrsAttrName(result.name));
|
||||
}
|
||||
|
||||
void FuncOp::print(mlir::OpAsmPrinter& p)
|
||||
void FuncOp::print(OpAsmPrinter& p)
|
||||
{
|
||||
// Dispatch to the FunctionOpInterface provided utility method that prints the
|
||||
// function operation.
|
||||
mlir::function_interface_impl::printFunctionOp(
|
||||
function_interface_impl::printFunctionOp(
|
||||
p, *this, /*isVariadic=*/false, getFunctionTypeAttrName(),
|
||||
getArgAttrsAttrName(), getResAttrsAttrName());
|
||||
}
|
||||
@@ -227,26 +296,31 @@ void FuncOp::print(mlir::OpAsmPrinter& p)
|
||||
// MulOp
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
void MulOp::build(mlir::OpBuilder& builder, mlir::OperationState& state,
|
||||
mlir::Value lhs, mlir::Value rhs)
|
||||
void MulOp::build(OpBuilder& builder, OperationState& state,
|
||||
Value lhs, Value rhs)
|
||||
{
|
||||
state.addTypes(UnrankedTensorType::get(builder.getF64Type()));
|
||||
state.addOperands({lhs, rhs});
|
||||
}
|
||||
|
||||
mlir::ParseResult MulOp::parse(mlir::OpAsmParser& parser,
|
||||
mlir::OperationState& result)
|
||||
ParseResult MulOp::parse(OpAsmParser& parser,
|
||||
OperationState& result)
|
||||
{
|
||||
return parseBinaryOp(parser, result);
|
||||
}
|
||||
|
||||
void MulOp::print(mlir::OpAsmPrinter& p) { printBinaryOp(p, *this); }
|
||||
void MulOp::print(OpAsmPrinter& p) { printBinaryOp(p, *this); }
|
||||
|
||||
void MulOp::inferShapes()
|
||||
{
|
||||
getResult().setType(getLhs().getType());
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// ReturnOp
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
mlir::LogicalResult ReturnOp::verify()
|
||||
LogicalResult ReturnOp::verify()
|
||||
{
|
||||
// We know that the parent operation is a function, because of the 'HasParent'
|
||||
// trait attached to the operation definition.
|
||||
@@ -265,15 +339,15 @@ mlir::LogicalResult ReturnOp::verify()
|
||||
|
||||
// If the operation does not have an input, we are done.
|
||||
if (!hasOperand())
|
||||
return mlir::success();
|
||||
return success();
|
||||
|
||||
auto inputType = *operand_type_begin();
|
||||
auto resultType = results.front();
|
||||
|
||||
// Check that the result type of the function matches the operand type.
|
||||
if (inputType == resultType || llvm::isa<mlir::UnrankedTensorType>(inputType) ||
|
||||
llvm::isa<mlir::UnrankedTensorType>(resultType))
|
||||
return mlir::success();
|
||||
if (inputType == resultType || llvm::isa<UnrankedTensorType>(inputType) ||
|
||||
llvm::isa<UnrankedTensorType>(resultType))
|
||||
return success();
|
||||
|
||||
return emitError() << "type of return operand (" << inputType
|
||||
<< ") doesn't match function result type (" << resultType
|
||||
@@ -284,19 +358,19 @@ mlir::LogicalResult ReturnOp::verify()
|
||||
// TransposeOp
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
void TransposeOp::build(mlir::OpBuilder& builder, mlir::OperationState& state,
|
||||
mlir::Value value)
|
||||
void TransposeOp::build(OpBuilder& builder, OperationState& state,
|
||||
Value value)
|
||||
{
|
||||
state.addTypes(UnrankedTensorType::get(builder.getF64Type()));
|
||||
state.addOperands(value);
|
||||
}
|
||||
|
||||
mlir::LogicalResult TransposeOp::verify()
|
||||
LogicalResult TransposeOp::verify()
|
||||
{
|
||||
auto inputType = llvm::dyn_cast<RankedTensorType>(getOperand().getType());
|
||||
auto resultType = llvm::dyn_cast<RankedTensorType>(getType());
|
||||
if (!inputType || !resultType)
|
||||
return mlir::success();
|
||||
return success();
|
||||
|
||||
auto inputShape = inputType.getShape();
|
||||
if (!std::equal(inputShape.begin(), inputShape.end(),
|
||||
@@ -305,7 +379,43 @@ mlir::LogicalResult TransposeOp::verify()
|
||||
return emitError()
|
||||
<< "expected result shape to be a transpose of the input";
|
||||
}
|
||||
return mlir::success();
|
||||
return success();
|
||||
}
|
||||
|
||||
void TransposeOp::inferShapes()
|
||||
{
|
||||
// Transpose will reverse the shape of tensor.
|
||||
auto tensorType = llvm::cast<RankedTensorType>(getOperand().getType());
|
||||
// And assume that transpose only applies for matrix.
|
||||
SmallVector<int64_t, 2> dimensions(llvm::reverse(tensorType.getShape()));
|
||||
getResult().setType(RankedTensorType::get(dimensions, tensorType.getElementType()));
|
||||
}
|
||||
|
||||
// CastOp
|
||||
|
||||
bool CastOp::areCastCompatible(TypeRange inputs, TypeRange outputs)
|
||||
{
|
||||
if (inputs.size() != 1 || outputs.size() != 1)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
const auto inputTensorType = mlir::dyn_cast<TensorType>(inputs.front());
|
||||
const auto outputTensorType = mlir::dyn_cast<TensorType>(outputs.front());
|
||||
|
||||
if (!inputTensorType || !outputTensorType || inputTensorType.getElementType() != outputTensorType.getElementType())
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
// If both have rank, they must be to the size.
|
||||
// And the known size can be cast into unknown size.
|
||||
return !inputTensorType.hasRank() || !outputTensorType.hasRank() || inputTensorType == outputTensorType;
|
||||
}
|
||||
|
||||
void CastOp::inferShapes()
|
||||
{
|
||||
getResult().setType(getInput().getType());
|
||||
}
|
||||
|
||||
|
||||
|
@@ -44,7 +44,9 @@ namespace
|
||||
theModule = mlir::ModuleOp::create(builder.getUnknownLoc());
|
||||
|
||||
for (Function& f : moduleAST)
|
||||
{
|
||||
mlirGen(f);
|
||||
}
|
||||
|
||||
// Verify the module after we have finished constructing it, this will check
|
||||
// the structural properties of the IR and invoke any specific verifiers we
|
||||
@@ -160,6 +162,13 @@ namespace
|
||||
function.getFunctionType().getInputs(), getType(ValueType{})));
|
||||
}
|
||||
|
||||
// Jus set all functions except 'main' to private
|
||||
// which is used to inline the other functions.
|
||||
if (funcAST.getPrototype()->getName() != "main")
|
||||
{
|
||||
function.setPrivate();
|
||||
}
|
||||
|
||||
return function;
|
||||
}
|
||||
|
||||
|
95
lib/ShapeInferencePass.cpp
Normal file
95
lib/ShapeInferencePass.cpp
Normal file
@@ -0,0 +1,95 @@
|
||||
//
|
||||
// Created by ricardo on 02/06/25.
|
||||
//
|
||||
|
||||
#include <llvm/Support/Debug.h>
|
||||
#include <mlir/Pass/Pass.h>
|
||||
|
||||
#include "Dialect.h"
|
||||
#include "Passes.h"
|
||||
|
||||
|
||||
namespace mlir::hello
|
||||
{
|
||||
#include "hello/ShapeInferenceInterface.cpp.inc"
|
||||
}
|
||||
|
||||
|
||||
#define DEBUG_TYPE "ShapeInference"
|
||||
|
||||
namespace
|
||||
{
|
||||
struct ShapeInferencePass : mlir::PassWrapper<ShapeInferencePass, mlir::OperationPass<mlir::hello::FuncOp>>
|
||||
{
|
||||
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(ShapeInferencePass)
|
||||
|
||||
|
||||
void runOnOperation() override
|
||||
{
|
||||
mlir::hello::FuncOp operation = getOperation();
|
||||
llvm::SmallPtrSet<mlir::Operation*, 16> opWorkList;
|
||||
|
||||
operation.walk([&](mlir::Operation* op)
|
||||
{
|
||||
if (isDynamicShapes(op))
|
||||
{
|
||||
opWorkList.insert(op);
|
||||
}
|
||||
});
|
||||
|
||||
while (!opWorkList.empty())
|
||||
{
|
||||
auto nextOperation = llvm::find_if(opWorkList, isOperationInferred);
|
||||
if (nextOperation == opWorkList.end())
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
mlir::Operation* op = *nextOperation;
|
||||
opWorkList.erase(op);
|
||||
LLVM_DEBUG(llvm::dbgs() << "Inferring shape for: " << *op << "\n");
|
||||
|
||||
if (auto shapeInference = mlir::dyn_cast<mlir::hello::ShapeInference>(op))
|
||||
{
|
||||
shapeInference.inferShapes();
|
||||
}
|
||||
else
|
||||
{
|
||||
op->emitError(
|
||||
std::string("Failed to inference shape for operation '") + op->getName().getIdentifier().str() +
|
||||
"' without shape inference interface.");
|
||||
signalPassFailure();
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
if (!opWorkList.empty())
|
||||
{
|
||||
operation.emitError("Failed to inference shape, ") << opWorkList.size() <<
|
||||
" operations failed to inference.\n";
|
||||
signalPassFailure();
|
||||
}
|
||||
}
|
||||
|
||||
static bool isOperationInferred(mlir::Operation* op)
|
||||
{
|
||||
return llvm::all_of(op->getOperandTypes(), [](mlir::Type operandType)
|
||||
{
|
||||
return llvm::isa<mlir::RankedTensorType>(operandType);
|
||||
});
|
||||
}
|
||||
|
||||
static bool isDynamicShapes(mlir::Operation* op)
|
||||
{
|
||||
return llvm::any_of(op->getResultTypes(), [](mlir::Type operandType)
|
||||
{
|
||||
return !llvm::isa<mlir::RankedTensorType>(operandType);
|
||||
});
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
std::unique_ptr<mlir::Pass> mlir::hello::createShapeInferencePass()
|
||||
{
|
||||
return std::make_unique<ShapeInferencePass>();
|
||||
}
|
Reference in New Issue
Block a user