20240101 Finished
This commit is contained in:
parent
a4f5f284b8
commit
6b6228f712
|
@ -11,3 +11,4 @@ mod s0912_sort_an_array;
|
||||||
mod s1276_number_of_burgers_with_no_waste_of_ingredients;
|
mod s1276_number_of_burgers_with_no_waste_of_ingredients;
|
||||||
mod s0006_zigzag_conversion;
|
mod s0006_zigzag_conversion;
|
||||||
mod s0007_reverse_integer;
|
mod s0007_reverse_integer;
|
||||||
|
mod s0004_median_of_two_sorted_arrays;
|
||||||
|
|
90
src/solution/s0004_median_of_two_sorted_arrays.rs
Normal file
90
src/solution/s0004_median_of_two_sorted_arrays.rs
Normal file
|
@ -0,0 +1,90 @@
|
||||||
|
/**
|
||||||
|
* [4] Median of Two Sorted Arrays
|
||||||
|
*
|
||||||
|
* Given two sorted arrays nums1 and nums2 of size m and n respectively, return the median of the two sorted arrays.
|
||||||
|
* The overall run time complexity should be O(log (m+n)).
|
||||||
|
*
|
||||||
|
* <strong class="example">Example 1:
|
||||||
|
*
|
||||||
|
* Input: nums1 = [1,3], nums2 = [2]
|
||||||
|
* Output: 2.00000
|
||||||
|
* Explanation: merged array = [1,2,3] and median is 2.
|
||||||
|
*
|
||||||
|
* <strong class="example">Example 2:
|
||||||
|
*
|
||||||
|
* Input: nums1 = [1,2], nums2 = [3,4]
|
||||||
|
* Output: 2.50000
|
||||||
|
* Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.
|
||||||
|
*
|
||||||
|
*
|
||||||
|
* Constraints:
|
||||||
|
*
|
||||||
|
* nums1.length == m
|
||||||
|
* nums2.length == n
|
||||||
|
* 0 <= m <= 1000
|
||||||
|
* 0 <= n <= 1000
|
||||||
|
* 1 <= m + n <= 2000
|
||||||
|
* -10^6 <= nums1[i], nums2[i] <= 10^6
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
pub struct Solution {}
|
||||||
|
|
||||||
|
// problem: https://leetcode.cn/problems/median-of-two-sorted-arrays/
|
||||||
|
// discuss: https://leetcode.cn/problems/median-of-two-sorted-arrays/discuss/?currentPage=1&orderBy=most_votes&query=
|
||||||
|
|
||||||
|
// submission codes start here
|
||||||
|
|
||||||
|
use std::cmp::min;
|
||||||
|
|
||||||
|
impl Solution {
|
||||||
|
pub fn find_median_sorted_arrays(nums1: Vec<i32>, nums2: Vec<i32>) -> f64 {
|
||||||
|
let len1 = nums1.len() as i32;
|
||||||
|
let len2 = nums2.len() as i32;
|
||||||
|
let left = (len1 + len2 + 1) / 2 ;
|
||||||
|
let right = (len1 + len2 + 2) / 2;
|
||||||
|
|
||||||
|
(Solution::get_k_th(&nums1, 0, len1 - 1, &nums2, 0, len2 - 1, left) as f64 +
|
||||||
|
Solution::get_k_th(&nums1, 0, len1 - 1, &nums2, 0, len2 - 1, right) as f64) * 0.5
|
||||||
|
}
|
||||||
|
|
||||||
|
fn get_k_th(nums1: &Vec<i32>, start1: i32, end1: i32,
|
||||||
|
nums2: &Vec<i32>, start2: i32, end2: i32, k: i32) -> i32 {
|
||||||
|
let len1 = end1 + 1 - start1;
|
||||||
|
let len2 = end2 + 1 - start2;
|
||||||
|
|
||||||
|
if len1 > len2 {
|
||||||
|
return Solution::get_k_th(nums2, start2, end2, nums1, start1, end1, k);
|
||||||
|
}
|
||||||
|
|
||||||
|
if len1 == 0 {
|
||||||
|
return nums2[(start2 + k - 1) as usize];
|
||||||
|
}
|
||||||
|
|
||||||
|
if k == 1 {
|
||||||
|
return min(nums1[start1 as usize], nums2[start2 as usize]);
|
||||||
|
}
|
||||||
|
|
||||||
|
let i = start1 + min(len1, k / 2) - 1;
|
||||||
|
let j = start2 + min(len2, k / 2) - 1;
|
||||||
|
|
||||||
|
return if nums1[i as usize] > nums2[j as usize] {
|
||||||
|
Solution::get_k_th(nums1, start1, end1, nums2, j + 1, end2, k - (j - start2 + 1))
|
||||||
|
} else {
|
||||||
|
Solution::get_k_th(nums1, i + 1, end1, nums2, start2, end2, k - (i - start1 + 1))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// submission codes end
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_4() {
|
||||||
|
assert_eq!(2.0, Solution::find_median_sorted_arrays(vec![1, 3], vec![2]));
|
||||||
|
assert_eq!(2.5, Solution::find_median_sorted_arrays(vec![1, 2], vec![3, 4]));
|
||||||
|
assert_eq!(2.0, Solution::find_median_sorted_arrays(vec![2], vec![]));
|
||||||
|
}
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user