20231221 Finished
This commit is contained in:
parent
d73da2a736
commit
6cbf838bd8
|
@ -6,3 +6,4 @@ mod s0002_add_two_numbers;
|
|||
mod s0003_longest_substring_without_repeating_characters;
|
||||
mod s0162_find_peak_element;
|
||||
mod s2828_check_if_a_string_is_an_acronym_of_words;
|
||||
mod s0052_n_queens_ii;
|
||||
|
|
89
src/solution/s0052_n_queens_ii.rs
Normal file
89
src/solution/s0052_n_queens_ii.rs
Normal file
|
@ -0,0 +1,89 @@
|
|||
/**
|
||||
* [52] N-Queens II
|
||||
*
|
||||
* The n-queens puzzle is the problem of placing n queens on an n x n chessboard such that no two queens attack each other.
|
||||
* Given an integer n, return the number of distinct solutions to the n-queens puzzle.
|
||||
*
|
||||
* <strong class="example">Example 1:
|
||||
* <img alt="" src="https://assets.leetcode.com/uploads/2020/11/13/queens.jpg" style="width: 600px; height: 268px;" />
|
||||
* Input: n = 4
|
||||
* Output: 2
|
||||
* Explanation: There are two distinct solutions to the 4-queens puzzle as shown.
|
||||
*
|
||||
* <strong class="example">Example 2:
|
||||
*
|
||||
* Input: n = 1
|
||||
* Output: 1
|
||||
*
|
||||
*
|
||||
* Constraints:
|
||||
*
|
||||
* 1 <= n <= 9
|
||||
*
|
||||
*/
|
||||
pub struct Solution {}
|
||||
|
||||
// problem: https://leetcode.cn/problems/n-queens-ii/
|
||||
// discuss: https://leetcode.cn/problems/n-queens-ii/discuss/?currentPage=1&orderBy=most_votes&query=
|
||||
|
||||
// submission codes start here
|
||||
|
||||
use std::collections::VecDeque;
|
||||
|
||||
impl Solution {
|
||||
pub fn total_n_queens(n: i32) -> i32 {
|
||||
let n = n as usize;
|
||||
let mut result = 0;
|
||||
let mut stack = VecDeque::new();
|
||||
|
||||
for i in 0..n {
|
||||
stack.push_back((0usize, i, false));
|
||||
}
|
||||
|
||||
let mut x_occupied = vec![false; n];
|
||||
let mut y_occupied = vec![false; 2 * n - 1];
|
||||
let mut z_occupied = vec![false; 2 * n - 1];
|
||||
|
||||
while let Some((x, y, flag)) = stack.pop_back() {
|
||||
if flag {
|
||||
x_occupied[y] = false;
|
||||
y_occupied[n - 1 + x - y] = false;
|
||||
z_occupied[x + y] = false;
|
||||
} else {
|
||||
x_occupied[y] = true;
|
||||
y_occupied[n - 1 + x - y] = true;
|
||||
z_occupied[x + y] = true;
|
||||
|
||||
stack.push_back((x, y, true));
|
||||
|
||||
if x == n - 1 {
|
||||
result += 1;
|
||||
continue;
|
||||
}
|
||||
|
||||
for j in 0..n {
|
||||
// 注意这里在判断的点是(x + 1, j)
|
||||
if !x_occupied[j] && !y_occupied[n + x - j] && !z_occupied[x + 1 + j] {
|
||||
stack.push_back((x + 1, j, false));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
result
|
||||
}
|
||||
}
|
||||
|
||||
// submission codes end
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_52() {
|
||||
assert_eq!(1, Solution::total_n_queens(1));
|
||||
assert_eq!(2, Solution::total_n_queens(4));
|
||||
assert_eq!(14200, Solution::total_n_queens(12));
|
||||
}
|
||||
}
|
|
@ -34,7 +34,7 @@ pub struct Solution {}
|
|||
impl Solution {
|
||||
pub fn find_peak_element(nums: Vec<i32>) -> i32 {
|
||||
if nums.len() == 1 {
|
||||
0
|
||||
return 0;
|
||||
}
|
||||
|
||||
let (mut left, mut right) = (0, nums.len() - 1);
|
||||
|
|
Loading…
Reference in New Issue
Block a user