/** * [1278] Palindrome Partitioning III */ pub struct Solution {} // submission codes start here impl Solution { pub fn palindrome_partition(s: String, k: i32) -> i32 { let s: Vec = s.chars().collect(); let length = s.len(); // cost[i][j] // 将 s[i..=j] 修改为回文串需要的修改次数 let mut cost = vec![vec![0; length]; length]; for span in 2..=length { for i in 0..=length - span { let j = i + span - 1; cost[i][j] = cost[i + 1][j - 1] + if s[i] == s[j] { 0 } else { 1 }; } } let k = k as usize; // dp[i][j] // 将s[..i]分割为j个回文串需要的修改次数 let mut dp = vec![vec![i32::MAX; k + 1]; length + 1]; for i in 1..=length { for j in 1..=i.min(k) { if j == 1 { dp[i][j] = cost[0][i - 1]; } else { // 这里k从j - 1开始枚举是因为前面需要进行j - 1次分割时 // 字符串的长度必须大于等于j - 1 for k in j - 1..i { dp[i][j] = dp[i][j].min(dp[k][j - 1] + cost[k][i - 1]); } } } } dp[length][k] } } // submission codes end #[cfg(test)] mod tests { use super::*; #[test] fn test_1278() { assert_eq!(1, Solution::palindrome_partition("abc".to_owned(), 2)); assert_eq!(0, Solution::palindrome_partition("aabbc".to_owned(), 3)); assert_eq!(0, Solution::palindrome_partition("leetcode".to_owned(), 8)); } }