# 实验四实验报告 ## 实验目的 - 了解服务器配置的过程 - 熟悉使用`Scala`编写`Spark`程序的过程 - 了解`Spark RDD`的工作原理 - 掌握在`Spark`集群上运行程序的方法 - 掌握使用`Spark SQL`读取数据库的方法 ## 实验步骤 ### 安装Spark 仍然直接使用`docker`的方式进行安装,直接将安装的步骤写在`Dockerfile`中,因此这里首先给出修改之后的`Dockerfile`: ```dockerfile FROM archlinux:latest # Install necessary dependencies RUN echo 'Server = https://mirrors.tuna.tsinghua.edu.cn/archlinux/$repo/os/$arch' > /etc/pacman.d/mirrorlist RUN echo 'Server = https://mirrors.ustc.edu.cn/archlinux/$repo/os/$arch' >> /etc/pacman.d/mirrorlist RUN echo 'Server = https://mirrors.aliyun.com/archlinux/$repo/os/$arch' >> /etc/pacman.d/mirrorlist RUN pacman -Sy --noconfirm openssh jdk8-openjdk which inetutils # Setting JAVA_HOME env ENV JAVA_HOME=/usr/lib/jvm/java-8-openjdk # Configuring SSH login RUN echo 'ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABgQCyyLt1bsAlCcadB2krSCDr0JP8SrF7EsUM+Qiv3m+V10gIBoCBFEh9iwpVN1UMioK8qdl9lm+LK22RW+IU6RjW+zyPB7ui3LlG0bk5H4g9v7uXH/+/ANfiJI2/2+Q4gOQAsRR+7kOpGemeKnFGJMgxnndSCpgYI4Is9ydAFzcQcGgxVB2mTGT6siufJb77tWKxrVzGn60ktdRxfwqct+2Nt88GTGw7eGJfMQADX1fVt9490M3G3x2Kw9KweXr2m+qr1yCRAlt3WyNHoNOXVhrF41/YgwGe0sGJd+kXBAdM2nh2xa0ZZPUGFkAp4MIWBDbycleRCeLUpCHFB0bt2D82BhF9luCeTXtpLyDym1+PS+OLZ3NDcvztBaH8trsgH+RkUc2Bojo1J4W9NoiEWsHGlaziWgF6L3z1vgesDPboxd0ol6EhKVX+QjxA9XE79IT4GidHxDwqonJz/dHXwjilqqmI4TEHndVWhJN0GV47a63+YCK02VAZ2mOA3aw/7LE= ricardo@magicbook-14' >> /root/.ssh/authorized_keys COPY id_big_data /root/.ssh/id_rsa RUN echo 'Host *' >> /etc/ssh/ssh_config && echo ' StrictHostKeyChecking no' >> /etc/ssh/ssh_config # Install Hadoop ADD hadoop-3.3.6.tar.gz /opt/ RUN mv /opt/hadoop-3.3.6 /opt/hadoop && \ chmod -R 777 /opt/hadoop # Configure Hadoop ENV HADOOP_HOME=/opt/hadoop RUN echo "slave1" >> $HADOOP_HOME/etc/hadoop/workers RUN echo "slave2" >> $HADOOP_HOME/etc/hadoop/workers RUN echo "slave3" >> $HADOOP_HOME/etc/hadoop/workers RUN mkdir $HADOOP_HOME/tmp ENV HADOOP_TMP_DIR=$HADOOP_HOME/tmp RUN mkdir $HADOOP_HOME/namenode RUN mkdir $HADOOP_HOME/datanode ENV HADOOP_CONFIG_HOME=$HADOOP_HOME/etc/hadoop ENV PATH=$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH ENV HADOOP_CLASSPATH=$HADOOP_HOME/share/hadoop/tools/lib/*:$HADOOP_HOME/share/hadoop/common/lib/*:$HADOOP_HOME/share/hadoop/common/*:$HADOOP_HOME/share/hadoop/hdfs/*:$HADOOP_HOME/share/hadoop/hdfs/lib/*:$HADOOP_HOME/share/hadoop/yarn/*:$HADOOP_HOME/share/hadoop/yarn/lib/*:$HADOOP_HOME/share/hadoop/mapreduce/*:$HADOOP_HOME/share/hadoop/mapreduce/lib/*:$HADOOP_CLASSPATH ENV HDFS_NAMENODE_USER="root" ENV HDFS_DATANODE_USER="root" ENV HDFS_SECONDARYNAMENODE_USER="root" ENV YARN_RESOURCEMANAGER_USER="root" ENV YARN_NODEMANAGER_USER="root" COPY hadoop_config/* $HADOOP_HOME/etc/hadoop/ RUN sed -i '1i export JAVA_HOME=/usr/lib/jvm/java-8-openjdk' $HADOOP_HOME/etc/hadoop/hadoop-env.sh # Install zookeeper ADD apache-zookeeper-3.9.2-bin.tar.gz /opt/ RUN mv /opt/apache-zookeeper-3.9.2-bin /opt/zookeeper && \ chmod -R 777 /opt/zookeeper # Configure zookeeper ENV ZOOKEEPER_HOME=/opt/zookeeper ENV PATH=$ZOOKEEPER_HOME/bin:$PATH RUN mkdir $ZOOKEEPER_HOME/tmp COPY zookeeper_config/* $ZOOKEEPER_HOME/conf/ # Install hbase ADD hbase-2.5.8-bin.tar.gz /opt/ RUN mv /opt/hbase-2.5.8 /opt/hbase && \ chmod -R 777 /opt/hbase # Configure hbase ENV HBASE_HOME=/opt/hbase ENV PATH=$HBASE_HOME/bin:$HBASE_HOME/sbin:$PATH COPY hbase_config/* $HBASE_HOME/conf/ RUN echo "export JAVA_HOME=/usr/lib/jvm/java-8-openjdk" >> $HBASE_HOME/conf/hbase-env.sh RUN echo "export HBASE_MANAGES_ZK=false" >> $HBASE_HOME/conf/hbase-env.sh RUN echo "export HBASE_LIBRARY_PATH=/opt/hadoop/lib/native" >> $HBASE_HOME/conf/hbase-env.sh RUN echo 'export HBASE_DISABLE_HADOOP_CLASSPATH_LOOKUP="true"' >> $HBASE_HOME/conf/hbase-env.sh # Install spark ADD spark-3.5.1-bin-hadoop3-scala2.13.tgz /opt/ RUN mv /opt/spark-3.5.1-bin-hadoop3-scala2.13 /opt/spark && \ chmod -R 777 /opt/spark # Configure spark ENV SPARK_HOME=/opt/spark ENV PATH=$SPARK_HOME/bin:$PATH ENV HADOOP_CONF_DIR=/opt/hadoop/etc/hadoop ENV YARN_CONF_DIR=/opt/hadoop/etc/hadoop RUN mv /opt/spark/conf/spark-env.sh.template /opt/spark/conf/spark-env.sh && \ echo 'export SPARK_DIST_CLASSPATH=$(/opt/hadoop/bin/hadoop classpath)' >> /opt/spark/conf/spark-env.sh && \ touch /opt/spark/conf/workers && \ echo "master" >> /opt/spark/conf/workers && \ echo "slave1" >> /opt/spark/conf/workers && \ echo "slave2" >> /opt/spark/conf/workers && \ echo "slave3" >> /opt/spark/conf/workers COPY run.sh /run.sh ``` 正常启动容器,按照实验一中给定的步骤首先启动`hadoop`集群,首先验证`hadoop`集群启动是否成功。 ```shell yarn node -list ``` ![image-20240526135317455](实验四实验报告/image-20240526135317455.png) ```shell hdfs dfs -ls / ``` ![image-20240526135337986](实验四实验报告/image-20240526135337986.png) 然后启动`spark`集群,确认集群启动成功。 ![image-20240526135424472](实验四实验报告/image-20240526135424472.png) 然后`spark-shell`验证`spark`是否正确可用。 ![image-20240526135656161](实验四实验报告/image-20240526135656161.png) 能够正常在交互式Shell下运行示例程序,说明`spark`的安装和启动正确。 ### 编写程序完成单词计数任务 按照实验指导书中的说明创建使用`Spark`的`Scala`项目,在项目中编写进行单词计数的程序。在按照实验指导书上的指导,将编写好的程序编译打包为`jar`。 编写的程序如下: ```scala package top.rcj2021211180 import org.apache.spark.{SparkConf, SparkContext} class ScalaWordCount { } object ScalaWordCount { def main(args : Array[String]): Unit = { val list = List("hello hi hi spark", "hello spark hello hi sparksal", "hello hi hi sparkstreaming", "hello hi sparkgraphx") val sparkConf = new SparkConf().setAppName("word-count").setMaster("yarn") val sc = new SparkContext(sparkConf) val lines = sc.parallelize(list) val words = lines.flatMap((line: String) => { line.split(" ") }) val wordOne = words.map((word: String) => { (word, 1) }) val wordAndNum = wordOne.reduceByKey((count1: Int, count2: Int) => { count1 + count2 }) val ret = wordAndNum.sortBy(kv => kv._2, false) print(ret.collect().mkString(",")) ret.saveAsTextFile(path = "hdfs://master:8020/spark-test") sc.stop() } } ``` 使用下述命令进行运行: ```shell spark-submit --class top.rcj2021211180.ScalaWordCount --master yarn --num-executors 3 --driver-memory 1g --executor-memory 1g --executor-cores 1 BigData.jar ``` 查看运行的结果: ![image-20240526152418929](实验四实验报告/image-20240526152418929.png) ### 使用RDD编写独立应用程序实现数据去重 按照实验指导书中的内容编写下面的内容: ```scala package top.rcj2021211180 import org.apache.spark.{SparkConf, SparkContext} class ScalaDuplicateRemove { } object ScalaDuplicateRemove { def main(args: Array[String]): Unit = { val sparkConf = new SparkConf().setAppName("Scala Duplicate Remove").setMaster("local") val sc = new SparkContext(sparkConf) val basePath = "/duplicateFiles/" val linesA = sc.textFile(basePath + "A.txt") val linesB = sc.textFile(basePath + "B.txt") val lines = linesA.union(linesB).distinct().sortBy(identity) lines.saveAsTextFile(basePath + "C.txt") sc.stop() } } ``` 仍然按照上一次打包运行的方式进行打包和上传到集群中进行运行。 使用实验指导书中给出的样例的进行测试,首先将给定的两个文件`A.txt`和`B.txt`上传到`HDFS`文件系统中。 ![image-20240526160922326](实验四实验报告/image-20240526160922326.png) 运行Spark程序: ```shell spark-submit --class top.rcj2021211180.ScalaDuplicateRemove --master yarn --num-executors 3 --driver-memory 1g --executor-memory 1g --executor-cores 1 BigData.jar ``` ![image-20240526161121927](实验四实验报告/image-20240526161121927.png) 查看运行的结果: ![image-20240526161308849](实验四实验报告/image-20240526161308849.png) ### 使用Spark SQL读写数据库 为了让`spark`可以访问`Mysql`数据库,需要在`spark`中添加`Mysql`的`JDBC Connector`,因此直接在`Dockerfile`中添加相关的`jar`包。 ```dockerfile # Add Mysql JDBC Connector COPY mysql-connector-j-8.4.0.jar /opt/spark/jars/ ``` 这里使用容器的方式启动`mysql`,而不是直接在`master`容器中安装的方式。设计如下的`docker-compose.yml`文件: ```yaml version: '3.8' services: master: hostname: rcj-2021211180-master image: registry.cn-beijing.aliyuncs.com/jackfiled/hadoop-cluster command: - "/run.sh" - "1" networks: hadoop-network: ipv4_address: 172.126.1.111 slave1: hostname: rcj-2021211180-slave1 image: registry.cn-beijing.aliyuncs.com/jackfiled/hadoop-cluster command: - "/run.sh" - "2" networks: hadoop-network: ipv4_address: 172.126.1.112 slave2: hostname: rcj-2021211180-slave2 image: registry.cn-beijing.aliyuncs.com/jackfiled/hadoop-cluster command: - "/run.sh" - "3" networks: hadoop-network: ipv4_address: 172.126.1.113 slave3: hostname: rcj-2021211180-slave3 image: registry.cn-beijing.aliyuncs.com/jackfiled/hadoop-cluster command: - "/run.sh" - "4" networks: hadoop-network: ipv4_address: 172.126.1.114 db: image: mysql:8.0-debian environment: MYSQL_ROOT_PASSWORD: 12345678 networks: hadoop-network: networks: hadoop-network: driver: bridge ipam: config: - subnet: 172.126.1.0/24 ``` 重新启动集群。 在重新启动集群并添加`mysql`容器之后,首先进入`mysql`容器中在修改数据库的相关设置和创建供`spark`读写的数据库,并建立示例表,在表中插入两条示例数据。 ![image-20240526203703065](实验四实验报告/image-20240526203703065.png) 进入`Master`节点,重新启动`hadoop`集群并重新启动`spark`集群。 在进入`spark-shell`之后使用实验指导书上的命令验证`spark`是否能够访问数据库: ```scala val jdbcDP = spark.read.format("jdbc"). | option("url", "jdbc:mysql://db:3306/spark"). | option("driver", "com.mysql.cj.jdbc.Driver"). | option("dbtable", "student"). | option("user", "root"). | option("password", "12345678"). | load() ``` ![image-20240526204428500](实验四实验报告/image-20240526204428500.png) 需要注明的是,这里在使用容器启动数据库之后,需要将`JDBC`链接字符串的地址从`localhost`变更为对应容器的域名`db`。 在使用`spark-shell`验证可以读数据库之后,编写`scala`代码在数据库中写入更多的数据。 ```scala package top.rcj2021211180 import org.apache.spark.sql.{Row, SparkSession} import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType} import java.util.Properties class InsertStudent { } object InsertStudent { def main(args : Array[String]): Unit = { val spark = SparkSession.builder() .appName("Insert Student") .master("local") .getOrCreate() val sc = spark.sparkContext val studentData = Array("3 Zhang M 26", "4 Liu M 27") val studentRDD = sc.parallelize(studentData).map(_.split("\\s+")) val scheme = StructType(List( StructField("id", IntegerType, true), StructField("name", StringType, true), StructField("gender", StringType, true), StructField("age", IntegerType, true) )) val rowRDD = studentRDD.map(attr => Row(attr(0).toInt, attr(1), attr(2), attr(3).toInt)) val studentDF = spark.createDataFrame(rowRDD, scheme) val jdbcUrl = "jdbc:mysql://db:3306/spark" val connectionProperties = new Properties() connectionProperties.put("user", "root") connectionProperties.put("password", "12345678") connectionProperties.put("driver", "com.mysql.cj.jdbc.Driver") studentDF.write .mode("append") .jdbc(jdbcUrl, "spark.student", connectionProperties) spark.stop() } } ``` 编写如上的程序,编译打包并上传到集群中运行。 ```shell spark-submit --class top.rcj2021211180.InsertStudent --master yarn --num-executors 3 --driver-memory 1g --executor-memory 1g --executor-cores 1 BigData.jar ``` ![image-20240526210634061](实验四实验报告/image-20240526210634061.png) 在运行之后,进入数据库容器中查看表中的内容: ![image-20240526210805499](实验四实验报告/image-20240526210805499.png) ## Bug列表 ### 无法在Master节点上启动Spark的Worker 在使用`bash start-workers.sh`脚本启动Spark的Workers时,我发现运行报错: ![image-20240526134241065](实验四实验报告/image-20240526134241065.png) 同时在`master`节点上运行`jps`发现,当前节点上并没有启动`worker`: ![image-20240526134314946](实验四实验报告/image-20240526134314946.png) 显然在脚本尝试在本地节点上启动Worker时报错失败了,但是此时的`Spark`集群中剩下的节点仍然正确启动了,使用`spark-shell`可以正常的计算。 经排查发现是`spark/conf/workers`中的内容错误: ![image-20240526134655010](实验四实验报告/image-20240526134655010.png) 修改`Dockerfile`中设置相关内容的命令修复问题。 重新创建容器之后再次启动`spark`集群,问题解决。 ![image-20240526135005780](实验四实验报告/image-20240526135005780.png) ### Failed to load class报错 在将`jar`打包好上传到`spark`中进行运行时报错提示无法找到主类。 ![image-20240526144735441](实验四实验报告/image-20240526144735441.png) 解压打包好的`jar`包,发现其中确实没有将`top.rcj2021211180.ScalaWordCount`这个`class`,怀疑在编译过程中出现配置错误。 尝试重新创建项目,并且在打包之前首先运行一次编译再打包,并在打包好之后按照实验指导书上的说明删除`MANIFEST.MF`文件,再次上传到集群中进行运行,此时程序没有报错。