BigData/Reports/实验四实验报告.md
2024-07-06 22:01:54 +08:00

418 lines
14 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# 实验四实验报告
## 实验目的
- 了解服务器配置的过程
- 熟悉使用`Scala`编写`Spark`程序的过程
- 了解`Spark RDD`的工作原理
- 掌握在`Spark`集群上运行程序的方法
- 掌握使用`Spark SQL`读取数据库的方法
## 实验步骤
### 安装Spark
仍然直接使用`docker`的方式进行安装,直接将安装的步骤写在`Dockerfile`中,因此这里首先给出修改之后的`Dockerfile`
```dockerfile
FROM archlinux:latest
# Install necessary dependencies
RUN echo 'Server = https://mirrors.tuna.tsinghua.edu.cn/archlinux/$repo/os/$arch' > /etc/pacman.d/mirrorlist
RUN echo 'Server = https://mirrors.ustc.edu.cn/archlinux/$repo/os/$arch' >> /etc/pacman.d/mirrorlist
RUN echo 'Server = https://mirrors.aliyun.com/archlinux/$repo/os/$arch' >> /etc/pacman.d/mirrorlist
RUN pacman -Sy --noconfirm openssh jdk8-openjdk which inetutils
# Setting JAVA_HOME env
ENV JAVA_HOME=/usr/lib/jvm/java-8-openjdk
# Configuring SSH login
RUN echo 'ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABgQCyyLt1bsAlCcadB2krSCDr0JP8SrF7EsUM+Qiv3m+V10gIBoCBFEh9iwpVN1UMioK8qdl9lm+LK22RW+IU6RjW+zyPB7ui3LlG0bk5H4g9v7uXH/+/ANfiJI2/2+Q4gOQAsRR+7kOpGemeKnFGJMgxnndSCpgYI4Is9ydAFzcQcGgxVB2mTGT6siufJb77tWKxrVzGn60ktdRxfwqct+2Nt88GTGw7eGJfMQADX1fVt9490M3G3x2Kw9KweXr2m+qr1yCRAlt3WyNHoNOXVhrF41/YgwGe0sGJd+kXBAdM2nh2xa0ZZPUGFkAp4MIWBDbycleRCeLUpCHFB0bt2D82BhF9luCeTXtpLyDym1+PS+OLZ3NDcvztBaH8trsgH+RkUc2Bojo1J4W9NoiEWsHGlaziWgF6L3z1vgesDPboxd0ol6EhKVX+QjxA9XE79IT4GidHxDwqonJz/dHXwjilqqmI4TEHndVWhJN0GV47a63+YCK02VAZ2mOA3aw/7LE= ricardo@magicbook-14' >> /root/.ssh/authorized_keys
COPY id_big_data /root/.ssh/id_rsa
RUN echo 'Host *' >> /etc/ssh/ssh_config && echo ' StrictHostKeyChecking no' >> /etc/ssh/ssh_config
# Install Hadoop
ADD hadoop-3.3.6.tar.gz /opt/
RUN mv /opt/hadoop-3.3.6 /opt/hadoop && \
chmod -R 777 /opt/hadoop
# Configure Hadoop
ENV HADOOP_HOME=/opt/hadoop
RUN echo "slave1" >> $HADOOP_HOME/etc/hadoop/workers
RUN echo "slave2" >> $HADOOP_HOME/etc/hadoop/workers
RUN echo "slave3" >> $HADOOP_HOME/etc/hadoop/workers
RUN mkdir $HADOOP_HOME/tmp
ENV HADOOP_TMP_DIR=$HADOOP_HOME/tmp
RUN mkdir $HADOOP_HOME/namenode
RUN mkdir $HADOOP_HOME/datanode
ENV HADOOP_CONFIG_HOME=$HADOOP_HOME/etc/hadoop
ENV PATH=$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH
ENV HADOOP_CLASSPATH=$HADOOP_HOME/share/hadoop/tools/lib/*:$HADOOP_HOME/share/hadoop/common/lib/*:$HADOOP_HOME/share/hadoop/common/*:$HADOOP_HOME/share/hadoop/hdfs/*:$HADOOP_HOME/share/hadoop/hdfs/lib/*:$HADOOP_HOME/share/hadoop/yarn/*:$HADOOP_HOME/share/hadoop/yarn/lib/*:$HADOOP_HOME/share/hadoop/mapreduce/*:$HADOOP_HOME/share/hadoop/mapreduce/lib/*:$HADOOP_CLASSPATH
ENV HDFS_NAMENODE_USER="root"
ENV HDFS_DATANODE_USER="root"
ENV HDFS_SECONDARYNAMENODE_USER="root"
ENV YARN_RESOURCEMANAGER_USER="root"
ENV YARN_NODEMANAGER_USER="root"
COPY hadoop_config/* $HADOOP_HOME/etc/hadoop/
RUN sed -i '1i export JAVA_HOME=/usr/lib/jvm/java-8-openjdk' $HADOOP_HOME/etc/hadoop/hadoop-env.sh
# Install zookeeper
ADD apache-zookeeper-3.9.2-bin.tar.gz /opt/
RUN mv /opt/apache-zookeeper-3.9.2-bin /opt/zookeeper && \
chmod -R 777 /opt/zookeeper
# Configure zookeeper
ENV ZOOKEEPER_HOME=/opt/zookeeper
ENV PATH=$ZOOKEEPER_HOME/bin:$PATH
RUN mkdir $ZOOKEEPER_HOME/tmp
COPY zookeeper_config/* $ZOOKEEPER_HOME/conf/
# Install hbase
ADD hbase-2.5.8-bin.tar.gz /opt/
RUN mv /opt/hbase-2.5.8 /opt/hbase && \
chmod -R 777 /opt/hbase
# Configure hbase
ENV HBASE_HOME=/opt/hbase
ENV PATH=$HBASE_HOME/bin:$HBASE_HOME/sbin:$PATH
COPY hbase_config/* $HBASE_HOME/conf/
RUN echo "export JAVA_HOME=/usr/lib/jvm/java-8-openjdk" >> $HBASE_HOME/conf/hbase-env.sh
RUN echo "export HBASE_MANAGES_ZK=false" >> $HBASE_HOME/conf/hbase-env.sh
RUN echo "export HBASE_LIBRARY_PATH=/opt/hadoop/lib/native" >> $HBASE_HOME/conf/hbase-env.sh
RUN echo 'export HBASE_DISABLE_HADOOP_CLASSPATH_LOOKUP="true"' >> $HBASE_HOME/conf/hbase-env.sh
# Install spark
ADD spark-3.5.1-bin-hadoop3-scala2.13.tgz /opt/
RUN mv /opt/spark-3.5.1-bin-hadoop3-scala2.13 /opt/spark && \
chmod -R 777 /opt/spark
# Configure spark
ENV SPARK_HOME=/opt/spark
ENV PATH=$SPARK_HOME/bin:$PATH
ENV HADOOP_CONF_DIR=/opt/hadoop/etc/hadoop
ENV YARN_CONF_DIR=/opt/hadoop/etc/hadoop
RUN mv /opt/spark/conf/spark-env.sh.template /opt/spark/conf/spark-env.sh && \
echo 'export SPARK_DIST_CLASSPATH=$(/opt/hadoop/bin/hadoop classpath)' >> /opt/spark/conf/spark-env.sh && \
touch /opt/spark/conf/workers && \
echo "master" >> /opt/spark/conf/workers && \
echo "slave1" >> /opt/spark/conf/workers && \
echo "slave2" >> /opt/spark/conf/workers && \
echo "slave3" >> /opt/spark/conf/workers
COPY run.sh /run.sh
```
正常启动容器,按照实验一中给定的步骤首先启动`hadoop`集群,首先验证`hadoop`集群启动是否成功。
```shell
yarn node -list
```
![image-20240526135317455](实验四实验报告/image-20240526135317455.png)
```shell
hdfs dfs -ls /
```
![image-20240526135337986](实验四实验报告/image-20240526135337986.png)
然后启动`spark`集群,确认集群启动成功。
![image-20240526135424472](实验四实验报告/image-20240526135424472.png)
然后`spark-shell`验证`spark`是否正确可用。
![image-20240526135656161](实验四实验报告/image-20240526135656161.png)
能够正常在交互式Shell下运行示例程序说明`spark`的安装和启动正确。
### 编写程序完成单词计数任务
按照实验指导书中的说明创建使用`Spark`的`Scala`项目,在项目中编写进行单词计数的程序。在按照实验指导书上的指导,将编写好的程序编译打包为`jar`。
编写的程序如下:
```scala
package top.rcj2021211180
import org.apache.spark.{SparkConf, SparkContext}
class ScalaWordCount {
}
object ScalaWordCount {
def main(args : Array[String]): Unit = {
val list = List("hello hi hi spark",
"hello spark hello hi sparksal",
"hello hi hi sparkstreaming",
"hello hi sparkgraphx")
val sparkConf = new SparkConf().setAppName("word-count").setMaster("yarn")
val sc = new SparkContext(sparkConf)
val lines = sc.parallelize(list)
val words = lines.flatMap((line: String) => {
line.split(" ")
})
val wordOne = words.map((word: String) => {
(word, 1)
})
val wordAndNum = wordOne.reduceByKey((count1: Int, count2: Int) => {
count1 + count2
})
val ret = wordAndNum.sortBy(kv => kv._2, false)
print(ret.collect().mkString(","))
ret.saveAsTextFile(path = "hdfs://master:8020/spark-test")
sc.stop()
}
}
```
使用下述命令进行运行:
```shell
spark-submit --class top.rcj2021211180.ScalaWordCount --master yarn --num-executors 3 --driver-memory 1g --executor-memory 1g --executor-cores 1 BigData.jar
```
查看运行的结果:
![image-20240526152418929](实验四实验报告/image-20240526152418929.png)
### 使用RDD编写独立应用程序实现数据去重
按照实验指导书中的内容编写下面的内容:
```scala
package top.rcj2021211180
import org.apache.spark.{SparkConf, SparkContext}
class ScalaDuplicateRemove {
}
object ScalaDuplicateRemove {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setAppName("Scala Duplicate Remove").setMaster("local")
val sc = new SparkContext(sparkConf)
val basePath = "/duplicateFiles/"
val linesA = sc.textFile(basePath + "A.txt")
val linesB = sc.textFile(basePath + "B.txt")
val lines = linesA.union(linesB).distinct().sortBy(identity)
lines.saveAsTextFile(basePath + "C.txt")
sc.stop()
}
}
```
仍然按照上一次打包运行的方式进行打包和上传到集群中进行运行。
使用实验指导书中给出的样例的进行测试,首先将给定的两个文件`A.txt`和`B.txt`上传到`HDFS`文件系统中。
![image-20240526160922326](实验四实验报告/image-20240526160922326.png)
运行Spark程序
```shell
spark-submit --class top.rcj2021211180.ScalaDuplicateRemove --master yarn --num-executors 3 --driver-memory 1g --executor-memory 1g --executor-cores 1 BigData.jar
```
![image-20240526161121927](实验四实验报告/image-20240526161121927.png)
查看运行的结果:
![image-20240526161308849](实验四实验报告/image-20240526161308849.png)
### 使用Spark SQL读写数据库
为了让`spark`可以访问`Mysql`数据库,需要在`spark`中添加`Mysql`的`JDBC Connector`,因此直接在`Dockerfile`中添加相关的`jar`包。
```dockerfile
# Add Mysql JDBC Connector
COPY mysql-connector-j-8.4.0.jar /opt/spark/jars/
```
这里使用容器的方式启动`mysql`,而不是直接在`master`容器中安装的方式。设计如下的`docker-compose.yml`文件:
```yaml
version: '3.8'
services:
master:
hostname: rcj-2021211180-master
image: registry.cn-beijing.aliyuncs.com/jackfiled/hadoop-cluster
command:
- "/run.sh"
- "1"
networks:
hadoop-network:
ipv4_address: 172.126.1.111
slave1:
hostname: rcj-2021211180-slave1
image: registry.cn-beijing.aliyuncs.com/jackfiled/hadoop-cluster
command:
- "/run.sh"
- "2"
networks:
hadoop-network:
ipv4_address: 172.126.1.112
slave2:
hostname: rcj-2021211180-slave2
image: registry.cn-beijing.aliyuncs.com/jackfiled/hadoop-cluster
command:
- "/run.sh"
- "3"
networks:
hadoop-network:
ipv4_address: 172.126.1.113
slave3:
hostname: rcj-2021211180-slave3
image: registry.cn-beijing.aliyuncs.com/jackfiled/hadoop-cluster
command:
- "/run.sh"
- "4"
networks:
hadoop-network:
ipv4_address: 172.126.1.114
db:
image: mysql:8.0-debian
environment:
MYSQL_ROOT_PASSWORD: 12345678
networks:
hadoop-network:
networks:
hadoop-network:
driver: bridge
ipam:
config:
- subnet: 172.126.1.0/24
```
重新启动集群。
在重新启动集群并添加`mysql`容器之后,首先进入`mysql`容器中在修改数据库的相关设置和创建供`spark`读写的数据库,并建立示例表,在表中插入两条示例数据。
![image-20240526203703065](实验四实验报告/image-20240526203703065.png)
进入`Master`节点,重新启动`hadoop`集群并重新启动`spark`集群。
在进入`spark-shell`之后使用实验指导书上的命令验证`spark`是否能够访问数据库:
```scala
val jdbcDP = spark.read.format("jdbc").
| option("url", "jdbc:mysql://db:3306/spark").
| option("driver", "com.mysql.cj.jdbc.Driver").
| option("dbtable", "student").
| option("user", "root").
| option("password", "12345678").
| load()
```
![image-20240526204428500](实验四实验报告/image-20240526204428500.png)
需要注明的是,这里在使用容器启动数据库之后,需要将`JDBC`链接字符串的地址从`localhost`变更为对应容器的域名`db`。
在使用`spark-shell`验证可以读数据库之后,编写`scala`代码在数据库中写入更多的数据。
```scala
package top.rcj2021211180
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import java.util.Properties
class InsertStudent {
}
object InsertStudent {
def main(args : Array[String]): Unit = {
val spark = SparkSession.builder()
.appName("Insert Student")
.master("local")
.getOrCreate()
val sc = spark.sparkContext
val studentData = Array("3 Zhang M 26", "4 Liu M 27")
val studentRDD = sc.parallelize(studentData).map(_.split("\\s+"))
val scheme = StructType(List(
StructField("id", IntegerType, true),
StructField("name", StringType, true),
StructField("gender", StringType, true),
StructField("age", IntegerType, true)
))
val rowRDD = studentRDD.map(attr => Row(attr(0).toInt, attr(1), attr(2), attr(3).toInt))
val studentDF = spark.createDataFrame(rowRDD, scheme)
val jdbcUrl = "jdbc:mysql://db:3306/spark"
val connectionProperties = new Properties()
connectionProperties.put("user", "root")
connectionProperties.put("password", "12345678")
connectionProperties.put("driver", "com.mysql.cj.jdbc.Driver")
studentDF.write
.mode("append")
.jdbc(jdbcUrl, "spark.student", connectionProperties)
spark.stop()
}
}
```
编写如上的程序,编译打包并上传到集群中运行。
```shell
spark-submit --class top.rcj2021211180.InsertStudent --master yarn --num-executors 3 --driver-memory 1g --executor-memory 1g --executor-cores 1 BigData.jar
```
![image-20240526210634061](实验四实验报告/image-20240526210634061.png)
在运行之后,进入数据库容器中查看表中的内容:
![image-20240526210805499](实验四实验报告/image-20240526210805499.png)
## Bug列表
### 无法在Master节点上启动Spark的Worker
在使用`bash start-workers.sh`脚本启动Spark的Workers时我发现运行报错
![image-20240526134241065](实验四实验报告/image-20240526134241065.png)
同时在`master`节点上运行`jps`发现,当前节点上并没有启动`worker`
![image-20240526134314946](实验四实验报告/image-20240526134314946.png)
显然在脚本尝试在本地节点上启动Worker时报错失败了但是此时的`Spark`集群中剩下的节点仍然正确启动了,使用`spark-shell`可以正常的计算。
经排查发现是`spark/conf/workers`中的内容错误:
![image-20240526134655010](实验四实验报告/image-20240526134655010.png)
修改`Dockerfile`中设置相关内容的命令修复问题。
重新创建容器之后再次启动`spark`集群,问题解决。
![image-20240526135005780](实验四实验报告/image-20240526135005780.png)
### Failed to load class报错
在将`jar`打包好上传到`spark`中进行运行时报错提示无法找到主类。
![image-20240526144735441](实验四实验报告/image-20240526144735441.png)
解压打包好的`jar`包,发现其中确实没有将`top.rcj2021211180.ScalaWordCount`这个`class`,怀疑在编译过程中出现配置错误。
尝试重新创建项目,并且在打包之前首先运行一次编译再打包,并在打包好之后按照实验指导书上的说明删除`MANIFEST.MF`文件,再次上传到集群中进行运行,此时程序没有报错。