14 KiB
实验四实验报告
实验目的
- 了解服务器配置的过程
- 熟悉使用
Scala
编写Spark
程序的过程 - 了解
Spark RDD
的工作原理 - 掌握在
Spark
集群上运行程序的方法 - 掌握使用
Spark SQL
读取数据库的方法
实验步骤
安装Spark
仍然直接使用docker
的方式进行安装,直接将安装的步骤写在Dockerfile
中,因此这里首先给出修改之后的Dockerfile
:
FROM archlinux:latest
# Install necessary dependencies
RUN echo 'Server = https://mirrors.tuna.tsinghua.edu.cn/archlinux/$repo/os/$arch' > /etc/pacman.d/mirrorlist
RUN echo 'Server = https://mirrors.ustc.edu.cn/archlinux/$repo/os/$arch' >> /etc/pacman.d/mirrorlist
RUN echo 'Server = https://mirrors.aliyun.com/archlinux/$repo/os/$arch' >> /etc/pacman.d/mirrorlist
RUN pacman -Sy --noconfirm openssh jdk8-openjdk which inetutils
# Setting JAVA_HOME env
ENV JAVA_HOME=/usr/lib/jvm/java-8-openjdk
# Configuring SSH login
RUN echo 'ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABgQCyyLt1bsAlCcadB2krSCDr0JP8SrF7EsUM+Qiv3m+V10gIBoCBFEh9iwpVN1UMioK8qdl9lm+LK22RW+IU6RjW+zyPB7ui3LlG0bk5H4g9v7uXH/+/ANfiJI2/2+Q4gOQAsRR+7kOpGemeKnFGJMgxnndSCpgYI4Is9ydAFzcQcGgxVB2mTGT6siufJb77tWKxrVzGn60ktdRxfwqct+2Nt88GTGw7eGJfMQADX1fVt9490M3G3x2Kw9KweXr2m+qr1yCRAlt3WyNHoNOXVhrF41/YgwGe0sGJd+kXBAdM2nh2xa0ZZPUGFkAp4MIWBDbycleRCeLUpCHFB0bt2D82BhF9luCeTXtpLyDym1+PS+OLZ3NDcvztBaH8trsgH+RkUc2Bojo1J4W9NoiEWsHGlaziWgF6L3z1vgesDPboxd0ol6EhKVX+QjxA9XE79IT4GidHxDwqonJz/dHXwjilqqmI4TEHndVWhJN0GV47a63+YCK02VAZ2mOA3aw/7LE= ricardo@magicbook-14' >> /root/.ssh/authorized_keys
COPY id_big_data /root/.ssh/id_rsa
RUN echo 'Host *' >> /etc/ssh/ssh_config && echo ' StrictHostKeyChecking no' >> /etc/ssh/ssh_config
# Install Hadoop
ADD hadoop-3.3.6.tar.gz /opt/
RUN mv /opt/hadoop-3.3.6 /opt/hadoop && \
chmod -R 777 /opt/hadoop
# Configure Hadoop
ENV HADOOP_HOME=/opt/hadoop
RUN echo "slave1" >> $HADOOP_HOME/etc/hadoop/workers
RUN echo "slave2" >> $HADOOP_HOME/etc/hadoop/workers
RUN echo "slave3" >> $HADOOP_HOME/etc/hadoop/workers
RUN mkdir $HADOOP_HOME/tmp
ENV HADOOP_TMP_DIR=$HADOOP_HOME/tmp
RUN mkdir $HADOOP_HOME/namenode
RUN mkdir $HADOOP_HOME/datanode
ENV HADOOP_CONFIG_HOME=$HADOOP_HOME/etc/hadoop
ENV PATH=$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH
ENV HADOOP_CLASSPATH=$HADOOP_HOME/share/hadoop/tools/lib/*:$HADOOP_HOME/share/hadoop/common/lib/*:$HADOOP_HOME/share/hadoop/common/*:$HADOOP_HOME/share/hadoop/hdfs/*:$HADOOP_HOME/share/hadoop/hdfs/lib/*:$HADOOP_HOME/share/hadoop/yarn/*:$HADOOP_HOME/share/hadoop/yarn/lib/*:$HADOOP_HOME/share/hadoop/mapreduce/*:$HADOOP_HOME/share/hadoop/mapreduce/lib/*:$HADOOP_CLASSPATH
ENV HDFS_NAMENODE_USER="root"
ENV HDFS_DATANODE_USER="root"
ENV HDFS_SECONDARYNAMENODE_USER="root"
ENV YARN_RESOURCEMANAGER_USER="root"
ENV YARN_NODEMANAGER_USER="root"
COPY hadoop_config/* $HADOOP_HOME/etc/hadoop/
RUN sed -i '1i export JAVA_HOME=/usr/lib/jvm/java-8-openjdk' $HADOOP_HOME/etc/hadoop/hadoop-env.sh
# Install zookeeper
ADD apache-zookeeper-3.9.2-bin.tar.gz /opt/
RUN mv /opt/apache-zookeeper-3.9.2-bin /opt/zookeeper && \
chmod -R 777 /opt/zookeeper
# Configure zookeeper
ENV ZOOKEEPER_HOME=/opt/zookeeper
ENV PATH=$ZOOKEEPER_HOME/bin:$PATH
RUN mkdir $ZOOKEEPER_HOME/tmp
COPY zookeeper_config/* $ZOOKEEPER_HOME/conf/
# Install hbase
ADD hbase-2.5.8-bin.tar.gz /opt/
RUN mv /opt/hbase-2.5.8 /opt/hbase && \
chmod -R 777 /opt/hbase
# Configure hbase
ENV HBASE_HOME=/opt/hbase
ENV PATH=$HBASE_HOME/bin:$HBASE_HOME/sbin:$PATH
COPY hbase_config/* $HBASE_HOME/conf/
RUN echo "export JAVA_HOME=/usr/lib/jvm/java-8-openjdk" >> $HBASE_HOME/conf/hbase-env.sh
RUN echo "export HBASE_MANAGES_ZK=false" >> $HBASE_HOME/conf/hbase-env.sh
RUN echo "export HBASE_LIBRARY_PATH=/opt/hadoop/lib/native" >> $HBASE_HOME/conf/hbase-env.sh
RUN echo 'export HBASE_DISABLE_HADOOP_CLASSPATH_LOOKUP="true"' >> $HBASE_HOME/conf/hbase-env.sh
# Install spark
ADD spark-3.5.1-bin-hadoop3-scala2.13.tgz /opt/
RUN mv /opt/spark-3.5.1-bin-hadoop3-scala2.13 /opt/spark && \
chmod -R 777 /opt/spark
# Configure spark
ENV SPARK_HOME=/opt/spark
ENV PATH=$SPARK_HOME/bin:$PATH
ENV HADOOP_CONF_DIR=/opt/hadoop/etc/hadoop
ENV YARN_CONF_DIR=/opt/hadoop/etc/hadoop
RUN mv /opt/spark/conf/spark-env.sh.template /opt/spark/conf/spark-env.sh && \
echo 'export SPARK_DIST_CLASSPATH=$(/opt/hadoop/bin/hadoop classpath)' >> /opt/spark/conf/spark-env.sh && \
touch /opt/spark/conf/workers && \
echo "master" >> /opt/spark/conf/workers && \
echo "slave1" >> /opt/spark/conf/workers && \
echo "slave2" >> /opt/spark/conf/workers && \
echo "slave3" >> /opt/spark/conf/workers
COPY run.sh /run.sh
正常启动容器,按照实验一中给定的步骤首先启动hadoop
集群,首先验证hadoop
集群启动是否成功。
yarn node -list
hdfs dfs -ls /
然后启动spark
集群,确认集群启动成功。
然后spark-shell
验证spark
是否正确可用。
能够正常在交互式Shell下运行示例程序,说明spark
的安装和启动正确。
编写程序完成单词计数任务
按照实验指导书中的说明创建使用Spark
的Scala
项目,在项目中编写进行单词计数的程序。在按照实验指导书上的指导,将编写好的程序编译打包为jar
。
编写的程序如下:
package top.rcj2021211180
import org.apache.spark.{SparkConf, SparkContext}
class ScalaWordCount {
}
object ScalaWordCount {
def main(args : Array[String]): Unit = {
val list = List("hello hi hi spark",
"hello spark hello hi sparksal",
"hello hi hi sparkstreaming",
"hello hi sparkgraphx")
val sparkConf = new SparkConf().setAppName("word-count").setMaster("yarn")
val sc = new SparkContext(sparkConf)
val lines = sc.parallelize(list)
val words = lines.flatMap((line: String) => {
line.split(" ")
})
val wordOne = words.map((word: String) => {
(word, 1)
})
val wordAndNum = wordOne.reduceByKey((count1: Int, count2: Int) => {
count1 + count2
})
val ret = wordAndNum.sortBy(kv => kv._2, false)
print(ret.collect().mkString(","))
ret.saveAsTextFile(path = "hdfs://master:8020/spark-test")
sc.stop()
}
}
使用下述命令进行运行:
spark-submit --class top.rcj2021211180.ScalaWordCount --master yarn --num-executors 3 --driver-memory 1g --executor-memory 1g --executor-cores 1 BigData.jar
查看运行的结果:
使用RDD编写独立应用程序实现数据去重
按照实验指导书中的内容编写下面的内容:
package top.rcj2021211180
import org.apache.spark.{SparkConf, SparkContext}
class ScalaDuplicateRemove {
}
object ScalaDuplicateRemove {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setAppName("Scala Duplicate Remove").setMaster("local")
val sc = new SparkContext(sparkConf)
val basePath = "/duplicateFiles/"
val linesA = sc.textFile(basePath + "A.txt")
val linesB = sc.textFile(basePath + "B.txt")
val lines = linesA.union(linesB).distinct().sortBy(identity)
lines.saveAsTextFile(basePath + "C.txt")
sc.stop()
}
}
仍然按照上一次打包运行的方式进行打包和上传到集群中进行运行。
使用实验指导书中给出的样例的进行测试,首先将给定的两个文件A.txt
和B.txt
上传到HDFS
文件系统中。
运行Spark程序:
spark-submit --class top.rcj2021211180.ScalaDuplicateRemove --master yarn --num-executors 3 --driver-memory 1g --executor-memory 1g --executor-cores 1 BigData.jar
查看运行的结果:
使用Spark SQL读写数据库
为了让spark
可以访问Mysql
数据库,需要在spark
中添加Mysql
的JDBC Connector
,因此直接在Dockerfile
中添加相关的jar
包。
# Add Mysql JDBC Connector
COPY mysql-connector-j-8.4.0.jar /opt/spark/jars/
这里使用容器的方式启动mysql
,而不是直接在master
容器中安装的方式。设计如下的docker-compose.yml
文件:
version: '3.8'
services:
master:
hostname: rcj-2021211180-master
image: registry.cn-beijing.aliyuncs.com/jackfiled/hadoop-cluster
command:
- "/run.sh"
- "1"
networks:
hadoop-network:
ipv4_address: 172.126.1.111
slave1:
hostname: rcj-2021211180-slave1
image: registry.cn-beijing.aliyuncs.com/jackfiled/hadoop-cluster
command:
- "/run.sh"
- "2"
networks:
hadoop-network:
ipv4_address: 172.126.1.112
slave2:
hostname: rcj-2021211180-slave2
image: registry.cn-beijing.aliyuncs.com/jackfiled/hadoop-cluster
command:
- "/run.sh"
- "3"
networks:
hadoop-network:
ipv4_address: 172.126.1.113
slave3:
hostname: rcj-2021211180-slave3
image: registry.cn-beijing.aliyuncs.com/jackfiled/hadoop-cluster
command:
- "/run.sh"
- "4"
networks:
hadoop-network:
ipv4_address: 172.126.1.114
db:
image: mysql:8.0-debian
environment:
MYSQL_ROOT_PASSWORD: 12345678
networks:
hadoop-network:
networks:
hadoop-network:
driver: bridge
ipam:
config:
- subnet: 172.126.1.0/24
重新启动集群。
在重新启动集群并添加mysql
容器之后,首先进入mysql
容器中在修改数据库的相关设置和创建供spark
读写的数据库,并建立示例表,在表中插入两条示例数据。
进入Master
节点,重新启动hadoop
集群并重新启动spark
集群。
在进入spark-shell
之后使用实验指导书上的命令验证spark
是否能够访问数据库:
val jdbcDP = spark.read.format("jdbc").
| option("url", "jdbc:mysql://db:3306/spark").
| option("driver", "com.mysql.cj.jdbc.Driver").
| option("dbtable", "student").
| option("user", "root").
| option("password", "12345678").
| load()
需要注明的是,这里在使用容器启动数据库之后,需要将JDBC
链接字符串的地址从localhost
变更为对应容器的域名db
。
在使用spark-shell
验证可以读数据库之后,编写scala
代码在数据库中写入更多的数据。
package top.rcj2021211180
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import java.util.Properties
class InsertStudent {
}
object InsertStudent {
def main(args : Array[String]): Unit = {
val spark = SparkSession.builder()
.appName("Insert Student")
.master("local")
.getOrCreate()
val sc = spark.sparkContext
val studentData = Array("3 Zhang M 26", "4 Liu M 27")
val studentRDD = sc.parallelize(studentData).map(_.split("\\s+"))
val scheme = StructType(List(
StructField("id", IntegerType, true),
StructField("name", StringType, true),
StructField("gender", StringType, true),
StructField("age", IntegerType, true)
))
val rowRDD = studentRDD.map(attr => Row(attr(0).toInt, attr(1), attr(2), attr(3).toInt))
val studentDF = spark.createDataFrame(rowRDD, scheme)
val jdbcUrl = "jdbc:mysql://db:3306/spark"
val connectionProperties = new Properties()
connectionProperties.put("user", "root")
connectionProperties.put("password", "12345678")
connectionProperties.put("driver", "com.mysql.cj.jdbc.Driver")
studentDF.write
.mode("append")
.jdbc(jdbcUrl, "spark.student", connectionProperties)
spark.stop()
}
}
编写如上的程序,编译打包并上传到集群中运行。
spark-submit --class top.rcj2021211180.InsertStudent --master yarn --num-executors 3 --driver-memory 1g --executor-memory 1g --executor-cores 1 BigData.jar
在运行之后,进入数据库容器中查看表中的内容:
Bug列表
无法在Master节点上启动Spark的Worker
在使用bash start-workers.sh
脚本启动Spark的Workers时,我发现运行报错:
同时在master
节点上运行jps
发现,当前节点上并没有启动worker
:
显然在脚本尝试在本地节点上启动Worker时报错失败了,但是此时的Spark
集群中剩下的节点仍然正确启动了,使用spark-shell
可以正常的计算。
经排查发现是spark/conf/workers
中的内容错误:
修改Dockerfile
中设置相关内容的命令修复问题。
重新创建容器之后再次启动spark
集群,问题解决。
Failed to load class报错
在将jar
打包好上传到spark
中进行运行时报错提示无法找到主类。
解压打包好的jar
包,发现其中确实没有将top.rcj2021211180.ScalaWordCount
这个class
,怀疑在编译过程中出现配置错误。
尝试重新创建项目,并且在打包之前首先运行一次编译再打包,并在打包好之后按照实验指导书上的说明删除MANIFEST.MF
文件,再次上传到集群中进行运行,此时程序没有报错。